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i
ABSTRACT

The main objective of this study is to provide new insights into enhancing fiber-
matrix bond and mechanical properties of ultra-high performance concrete (UHPC).
Three main strategies were investigated: 1) use of supplementary cementitious materials;
2) use of nano-particles; and 3) use of deformed fibers. A multi-scale investigation
involving the evaluation of non-fibrous UHPC mortar phase (matrix), fiber-matrix
interface phase, and then UHPC composite material was undertaken to determine
microstructural characteristics, fiber bond to matrix, and key mechanical properties of the
UHPC matrix and UHPC. Test results indicate that the incorporation of 10%-20% silica
fume effectively improved the fiber-matrix bond and mechanical properties due to
increased C-S-H content and decreased porosity. The flexural and tensile strengths of
UHPC were found to increase by approximately 15%-30% and 35%-70%, respectively.
Optimal nano-CaCOs and nano-SiO2 contents were found to be 3.2% and 1.0%,
respectively, by mass of binder. High nano-particle content decreased the fiber-matrix
bond and mechanical properties of matrix and UHPC due to the increased porosity and
introduction of weak zone at fiber-matrix interface. The use of deformed fibers enhanced
bond given additional mechanical interlocking and enhanced friction. Compared to
straight fibers, the corrugated and hooked fibers improved the bond strengths by
approximately three and seven times, respectively. Such values were three and four times
greater for pullout energy. The flexural strengths of UHPC made with 2% corrugated and
hooked fibers were enhanced by approximately 10%-30% and 15%-50%, respectively.
The tensile/flexural strengths of UHPC can be predicted based on the composite theory

given fiber-matrix bond strength, strength of matrix, and fiber characteristics.
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1. INTRODUCTION

1.1. BACKGROUND

Plain concrete is typical a brittle material exhibiting a relatively low tensile
strength, which is on the order of 8% to 15% of its compressive strength [1]. After
reaching the first cracking strength, a sudden drop in load carrying capacity is obtained.
The use of reinforcing steel and/or steel fibers is needed to resist tensile stress and reduce
cracking in concrete. Fiber-reinforced composite materials have attracted considerable
interest in recent years due to wide applications, such as repair, retrofitting of structural
elements, and construction of high strength and lightweight elements. ACI Committee
544 defines fiber reinforced concrete (FRC) as a composite material made of cement, fine
and/or coarse aggregates, and discontinuous discrete fibers [2]. Fibers include steel fibers,
glass fibers, synthetic fibers and natural fibers, each of which can lead to varying
properties to the concrete. The randomly oriented discrete fibers can efficiently control
the propagation of cracks because of stress transfer from the matrix to steel fiber. This
can eventually improve the tensile, bending, and shear properties of the composite
materials.

There has been an increasing interest in the development and use of FRC with
high strength and toughness. Several studies have been conducted on the design and
performance of FRC. ACI 544 [2] offers extensive information about the testing and
design of FRC and its benefits of structure uses related to the durability and mechanical
properties. The majority of FRC can exhibit single-cracking and tensile strain softening

behaviors [3, 4].
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The amount of fibers added into a concrete mixture is expressed as a percentage
of the total volume of the composite, including concrete and fibers, which is termed as
volume fraction. Typically, FRC can contain fiber volume of 0.1% to 3%, depending on
mixture proportion and fiber type, geometry, and shape [5]. Greater volume of fiber can
hinder workability, lead to non-uniform orientation of fibers and increased material cost.
With recent development of self-consolidating concrete, greater volume of steel fibers,
ranging from 0.5% to 1%, can be employed [6]. In addition to FRC, specialty concrete
containing greater contents of fibers has been developed. For example, Haynes [7]
reported a forming method with placing steel fibers in the mold then infiltrating the slurry
into the network. Similar approach was developed to prepare slurry infiltrated fiber
concrete (SIFCON). Lankard [8] comprehensively studied this method and investigated
the performance of SIFCON. SICON can obtain high compressive and flexural strengths
of 238 and 38.5 MPa, respectively, as well as good ductility. Haekman et al. [9]
developed slurry infiltrated mat concrete (SIMCON) using 4%-6% steel fiber-mats.

Li and Leung [10-13] proposed engineered cementitious composites (ECC) based
on micromechanics using short metallic and/or nonmetallic fibers that can exhibit strain-
hardening behavior. Such composite material can develop a typical tensile strain capacity
greater than 3% and a multiple-cracking behavior with a maximum crack width less than
100 um [11-13]. The ECC can develop a typical compressive strength of 40 - 80 MPa.
Richard and Cheyrezy [14,15] used fine and active components to develop reactive
powder concrete (RPC), which is the early form of what is known today as ultra-high
performance concrete (UHPC). RPC has 800-1200 kg/m? of binder, a very low water-to-

binder ratio (w/b) of 0.2, a very fine siliceous sand with a nominal maximum size of 0.4
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um, superplasticizer, and steel fibers. ACI 239 defines UHPC as a new composite
material that possesses a minimum specified compressive strength of 150 MPa with
specified durability, tensile ductility, and toughness requirements in the presence of fibers
[16]. Because of its extremely dense microstructure, high mechanical properties, and
superior durability, UHPC has great potential applications in infrastructures, including
pavements, bridges, repair and rehabilitation members, offshore structures, and protective
shelters [17].

However, several challenges are faced before its wide use, including: 1)
extremely high material cost associated with high binder content and steel fiber volume;
2) relatively low tensile/flexural strength compared to compressive strength due to
mismatch in physical and mechanical properties between the non-fibrous matrix and the
fibers; 3) high energy consumption associated with special curing regimen, such as 48 h
of 90 °C curing, in order to achieve high compressive strength over 150 MPa. Some
successful efforts have been recently made to reduce the material cost of UHPC without
sacrificing mechanical properties of UHPC, including using river and masonry sand and
supplementary cementitious materials [18,19]. As a type of inherently heterogeneous
composite materials, its macro-properties have a close relationship with its
microstructure, and/or bond to fiber. Limited work has been conducted on the effect of

phase between the UHPC matrix and embedded fibers on the performance of UHPC.

1.2. RESEARCH OBJECTIVES AND SIGNIFICANCE

The primary objective of this research is to provide new insights into enhancing

the fiber-matrix bond and mechanical properties of UHPC through optimization of
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microstructure, which finally targets at multi-optimization of performance for UHPC.
Microstructure-bond-property relationship to link the characteristic of the bond at
interfacial transition zone (ITZ) to the development of mechanical properties can be
established. The specific objectives of work proposed in this thesis can be described as
follows:

(1) To elucidate the effect of different factors on fiber-matrix interfacial bond
properties, fresh and hardened properties of the UHPC matrix. Such factors include
different types and contents of SCMs (silica fume, fly ash, and slag) as well as nano-
particles.

(2) To examine the silica fume content on fiber-bond behavior and key
mechanical properties of non-fibrous UHPC matrix and UHPC with adequate rheology
properties and uniform fiber orientation.

(3) To explore the features of microstructure development of the UHPC matrix
and fiber-matrix interface using advanced techniques, including thermal-gravimetry
analysis (TG), micro-hardness testing, scanning electron microscopy (SEM), X-ray
diffraction (XRD), 3D micro-tomography, and mercury intrusion porosimetry (MIP).

(4) To evaluate fiber-matrix bond and mechanical properties of UHPC reinforced
with different geometries. The composite mechanics theory can be employed to link the
flexural/tensile strength of UHPC to fiber-matrix bond strength, mechanical properties of
the matrix, and fiber parameters. This can give an important implication on predicting
and enhancing the flexural/tensile strength of a complex UHPC structure with knowing

the fundamental parameters of employed materials.
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(5) To correlate relationship between microstructure, fiber-matrix bond properties,
and static and impact mechanical properties of UHPC with relevant mixture composition.
The highlights of this proposed research would shed some light on how to

optimize and/or predict the fiber-matrix bond properties and eventually mechanical

properties of UHPC in the future research.

1.3. SCOPE

Figure 1.1 summarizes the scope of the proposed research that involved. The

proposed work was carried out in four tasks as follows.

Test SCM type Nano- Fiber Curing
and particles .
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Figure 1.1. Scope of the research
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Task 1: Influences of factors affecting fresh and hardened properties of UHPC
matrix and bond properties of fiber-matrix interface;

Task 2: Investigation of microstructure of the UHPC matrix and fiber-matrix
interface;

Task 3: Evaluation of fiber-matrix bond properties and mechanical properties of
UHPC with different fiber geometries;

Task 4: Relationship between microstructure, fiber-matrix bond properties, and

static and impact mechanical properties of UHPC.

1.4. DISSERTATION ORGANIZATION

The dissertation consists of 10 sections in the following sequence. Section 1
highlights the background, objectives, and scope of the research, and describes the
organization of the dissertation.

Section 2 reviews the current state-of-the-art on the relevant topics, including
fundamental principles for production of UHPC, characteristics of fiber-matrix interface
and bond properties, mechanical properties of UHPC, fiber strengthening and reinforcing
mechanisms. The concluding remarks and research need are then put forward. Part of the
literature review has been published Construction and Building Materials.

Section 3 describes the constituent materials, mixture design, preparation and
curing of specimens, and testing methods.

Section 4 investigates the effect of different silica fume contents on hydration
kinetics, mechanical properties and microstructure of non-fibrous UHPC matrix at a fixed

superplasticizer content. Advanced material characterization techniques, such as mercury

www.manaraa.com



intrusion porosimetry (MIP) and thermal gravimetric (TG) are employed to investigate
the microstructure development of the UHPC matrix. Focus is placed to secure high
density and mechanical properties of UHPC matrix with optimized silica fume content.
The findings from this section have been published in Cement and Concrete Composites.

Section 5 presents the fiber pullout, tensile, and flexural properties of UHPC
matrix and UHPC made with 2% steel fibers with different silica fume contents at a fixed
mini-slump flow of 280 mm. A simple and effective double-sided pullout test is proposed
to examine the fiber-matrix bond properties. Flexural-to-tensile strength ratio of UHPC is
determined and the tensile strength of UHPC made with different silica fume contents is
evaluated using the composite theory based on fiber-matrix bond strength.

Section 6 presents a multi-scale investigation of microstructure, fiber-matrix
bond, and mechanical properties of UHPC made with nano-CaCQs. The effect of nano-
CaCOs on fiber-matrix bond and mechanical properties of UHPC is investigated. A
statistical model is employed to fit the fiber-matrix bond properties with change in
CaCOs content and curing time. Focus is placed to link the fiber-matrix bond to
microstructure, and compressive and flexural strengths of UHPC with different nano-
CaCOscontents. The results presented in this section have been published in Cement and
Concrete Composites.

Section 7 explores the mechanism underlying strength enhancement of UHPC
enhanced with nano-SiOz. The effect of nano-SiOz on fiber-matrix bond and mechanical
properties of UHPC are investigated. Advanced material characterizations, including MIP,
3D micro-tomography, and BSEM were used to evaluate the microstructure of the matrix

and the fiber-matrix interface. Micro-hardness around the embedded fiber was evaluated
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as well. The results found from this section have been published in Cement and Concrete

Research and Cement and Concrete Composites.

Section 8 aims at evaluating the efficiency of fiber strengthening and reinforcing
mechanisms of UHPC made with different fiber geometries. The influence of straight,
hooked, and corrugated fibers on fiber-matrix bond and mechanical properties of UHPC
is studied. The composite theory is employed to predict the flexural strength of UHPC
based on the experimental parameters, such as fiber length and volume, strength of
UHPC matrix, fiber characteristics, and flexural-to-tensile strength ratio as determined
from Section 5. The results have been submitted to Cement and Concrete Composites.

Section 9 discusses the static and impact flexural properties of optimized UHPC
mixtures with various types of SCMs and nano-particles. Drop weight impact three-point
bending testing is conducted to investigate the impact flexural behavior of the specimens,
while the static flexural behavior is evaluated using the same-size specimens. Emphasis is
placed on comparing the static and impact behavior of UHPC mixtures. The results have
been submitted to Construction and Building Materials.

Section 10 summarizes the outcomes and findings of this dissertation and

proposes perspectives for future research.
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2. LITERATURE REVIEW

2.1. UHPC

ACI 239 defines UHPC as a new composite material that possesses a minimum
specified compressive strength of 150 MPa with specified durability, tensile ductility, and
toughness requirements in the presence of fibers [16]. On the other hand, ASTM C1856
addresses the UHPC specimens with a specified compressive strength of at least 120 MPa,
with nominal maximum size aggregate of less than 5 mm, and a flow between 200 and
250, for the purpose of determining the performance [20]. Typical mechanical properties
and durability of characteristics of conventional concrete (CC), high performance

concrete (HPC), and UHPC are summarized in Table 2.1.

Table 2.1. Mechanical properties and durability of CC, HPC, and UHPC [14]

Performance UHPC HPC CC
Compressive strength (MPa) > 150 60-100 20-60
Flexural strength (MPa) 25-60 6-10 3-5
Tensile strength (MPa) 5-15 <5 <3
Elastic modulus (GPa) 40-60 30-40 20-30
Fracture energy (J/m?) 20,000-40,000 120-500  30-100
Chloride-ion diffusion (mm) 1 8 23
Carbonation depth after 3 years (mm) 1.5 4 7
Salt-scaling resistance (g/m?) 20-50 150 <1500

Compared to CC and HPC, UHPC can develop: 1) very high mechanical

properties, rendering it as an exceptional candidate for prefabricated structure members
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with reduced dead-weight load and occupied space; 2) superior durability and extended

service life and reduced maintenance cost given the nearly impermeable material to
carbon dioxide, chlorides, and sulphates. It is important to note that hardened UHPC can
have considerable amount of unhydrated cement particles that can further hydrate

providing self-healing potential to cracked structures.

2.2. FUNDAMENTAL PRINCIPLES FOR PRODUCTION OF UHPC

The fundamental principles for the production of UHPC involve fours aspects,
including the reduction in porosity, improvement in microstructure, enhancement in
homogeneity, and increase in strength and toughness [21,22]. The following section
briefly describes these aspects.

2.2.1. Reduction in Porosity. Pore characteristics, including porosity, pore size
distribution, shape, and position of pores, have marked effect on mechanical and
transport properties of hardened cement-based materials. It is widely accepted that that
the reduction of compressive strength can increase the total porosity, which is closely
related to the water-to-cement ratio (w/c) [23,24]. Generally, the lower the wi/c is, the
lower the porosity is, and the higher the compressive strength is [25]. The porosity and
pore size distribution of a hardened concrete can be effectively improved by the use of
superplasticizer (SP), incorporation of SCMs, and proper curing [26,27]. SP can disperse
cement particles due to high electrostatic repulsion and steric hindrance when a
polycarboxylate type SP is used. This can increase the potential of hydration of the
cement particles and result in finer porosity. The use of SP can also liberate some of the

water that entrapped among agglomerated cement particles, thus enhancing the
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rheological properties of the material [28]. The use of SCMs has a marked effect on
reducing the capillary pores through the filler and pozzolanic effect. Proper moist and
heat curing are also essential to reduce porosity. Heat curing can accelerate cement
hydration at early ages because of exerted energy from high temperature, thus reducing
porosity. However, heat curing can be detrimental to strength development at long-term,
including when applied to HPC and UHPC [29,30]. These strategies of reducing porosity
lay the theoretical foundation for the design of UHPC.

2.2.2. Improvement in Microstructure. Compared to CC, UHPC can exhibite
much denser and uniform microstructure due to: (1) close packing of the system
associated with high amount of fine particles and absence of coarse aggregate; (2)
acceleration of hydration and pozzolanic reaction related to elevated temperature curing;
(3) reduction in relatively weak zones at interfacial transition zone (ITZ) associated with
the use of small-size aggregates. The low w/b of UHPC can result in low porosity with
null small pores from 30 to 100 nm [31]. This can restrict the space available for the
growth of large calcium hydroxide (CH) crystals and reduce the CH content.

Scanning electronic microscopy (SEM) observations of ITZ in a conventional
mortar and in UHPC under different curing regimes are shown in Figure 2.1 [32].
Because of the low w/b and highly pozzolanic reaction stemming from high content of
silica fume, the ITZ in UHPC was greatly improved [33]. Such ITZ in UHPC appears to
be as dense as the matrix, especially under autoclave curing, as indicated in Figure 2.1 (c).

2.2.3. Enhancement in Homogeneity. Aggregate, acting as a skeleton in

mortar and concrete, can exhibit greater hardness than that of the cement paste. Its large
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volume used in concrete reduces binder content and results in cost saving. However,
shear and tensile stresses can easily occur between the aggregate and paste matrix given
the mismatch in thermal and mechanical properties. The coefficient of thermal expansion
of aggregate is 5.6 - 6.7 x 10 °/°C, while 10 - 20 x 10 °/°C for cement paste, depending
on hydration time and w/b [34]. This can eventually lead to initiation and propagation of
cracks in the ITZ, which can also propagate in the bulk cement paste. The larger the

aggregate size is, the greater the crack size is, and the more the defect zone is [35].

(c) ITZ in UHPC after autoclave curing

Figure 2.1. SEM observations of ITZ of UHPC under different curing regimes [32]

www.manharaa.com




13

Therefore, the homogeneity of UHPC is significantly improved with the absence
of coarse aggregate [15]. As observed from Figure 2.1 (a-c), ITZ in UHPC seems as
dense as the matrix, indicating the homogeneity of its microstructure.

UHPC with optimization of micro-mechanical properties is also critical because
of different constituents in UHPC have various indentation modulus that related to

Young’s modulus and hardness levels, as summarized in Table 2.2 [36, 37].

Table 2.2. Micro-mechanical properties of constituents in UHPC [36]

_ Reference values
Constituents

Indentation modulus (GPa) Hardness (GPa)
Quartz powder 23.5 58.5+194
Quartz sand 73+1.6 10+£0.3
Cement clinker 125-145 + 25, 126.8 £ 8.1 8-10.8+3,6.7+1.2
Steel fiber 201.9+£20.3 11.99 + 1.97
Micro porosity 9.1+23 0.16 £ 0.07
Low density C-S-H 19.1+5.0,21.7+2.2,20.2+ 2.0, 0.80 +0.20, 0.66 = 0.3,
18.8+4.0,23.7+0.8 0.47 +0.17
High density C-S-H 34.2+5.0,32.3+3.0 1.36 £ 0.35, 1.29+0.1

The UHPC is composed of C-S-H, CH, residual cement clinkers, fine aggregates,
steel fibers, and pores. In term of stress transfer at the ITZ from the matrix to fiber, the
quality of ITZ plays a dominated role in strength and toughness of UHPC. Although fiber
used in UHPC is small, usually with diameter of 0.2 mm and length of 6-40 mm, porous
zones exist due to the wall and bleeding effect. Given the multiple components of UHPC,

including different SCM types and different curing regimes, differences in micro-
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mechanical properties can exist. This can affect stress transferring efficiencies from the
matrix to the fiber. Therefore, it is critical to develop UHPC with improved homogeneity
in size and micro-mechanical properties. Limited work has been done to enhance the
interface between the cement paste and embedded fibers in UHPC, which is affected by
the various mechanisms elaborated here.

2.2.4. Increase in Strength and Toughness. Steel reinforcements in concrete is
used to resist tensile loads and enhance toughness. Toughness is an indication of the
energy absorption capacity of a material, which is the area under load-displacement
curves [38]. Plain concrete on its own has relatively low tensile strength, strain capacity,
and fracture toughness compared to performance of composite, regardless of level of
compressive strength. The incorporation of reinforcement in concrete can effectively
prevent and control the propagation of cracks. When loads are acted on a composite
material, the fiber does not sustain the load at the very beginning. The load initially acts
on the matrix, and then transferred to the fibers through the fiber-matrix interface.

Figure 2.2 illustrates the fiber energy-absorbing mechanism through the fiber-
matrix interface [39]. Starting from the rightmost along the cracking path towards the
left, matrix cracking, fiber-matrix debonding, fiber bridging, pull-out and/or fiber rupture
sequentially occur.

Wau et al. [40] compared the flexural properties of UHPC made with 0-3% steel
fibers measuring 13 mm length at a w/b of 0.18. A reference specimen with no fiber (A0)
showed a sudden drop of load carrying capacity when achieving ultimate flexural
strength [40]. The incorporation of steel fibers resulted additional load carrying capacity

after reaching the first cracking load. After the peak load, the curves showed obvious
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zigzag patterns, indicating an enhancement in toughness during fiber pullout. The higher

volume of steel fiber led to greater flexural strength and toughness [40]. Greater volume
of steel fibers up to 4%-6% was also employed in UHPC made with a low water-to-
cement ratio of 0.15 [41]. However, high steel fiber content can lead to reduced
flowability, non-uniform fiber dispersion, and high materials cost. The use of 2% steel
fibers can secure high strength and toughens of UHPC. Long fibers enhanced the flexural
strength and energy absorption capacity of UHPC, but exerted a limited effect on the first

cracking properties [42].
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Figure 2.2. Energy-absorbing mechanisms through fiber-matrix interface [39]

2.3. CHARACTERISTICS OF FIBER-MATRIX INTERFACE AND BOND
PROPERTIES

The characteristics of fiber-matrix interface and bond properties between the fiber
and matrix are discussed with the consideration of different factors affecting such

performance.

www.manaraa.com



16
2.3.1. Formation of Interface. According to Maso [43], in the mixing process of

cement-based materials, when solid particles are in contact with water, a water film with
a thickness of several micro-meters can form around the fiber or aggregate surface.
Dissolved ions from cement particles can penetrate into the water film and deposite and
crystallize around the fiber or aggregate surface at different diffusion rates. For portland

cement, the ion diffusion ability follows the order of Na*>K*>S042>Ca?*>Si*" [44].

The first formed products would be ettringite and CH. Crystal CH has a preferential
orientation with c-axis perpendicular toward the fiber or aggregate surface, which can
leave some space near each other and makes the ITZ more porous than the matrix, as
shown in Figure 2.3 [45]. Furthermore, the fiber and/or aggregate can block the upward
movement of water and keep it underneath, eventually leading to the porous interface

[46].
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Figure 2.3. Schematic representation of ITZ between fiber and matrix [49]
2.3.2. Characteristics of Fiber-Matrix Interface. A fiber reinforced cement-
based material is a multi-phase system made up of pores, matrix, aggregate, fiber,
aggregate-matrix interface, and fiber-matrix interface. The existence of fiber-matrix and

aggregate-matrix interfaces with a thickness of 50-100 um was confirmed by several
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scholars [47-49]. Compared to the matrix, the interface exhibits the following
characteristics:

(1) Higher wi/c and greater porosity. The higher w/c of the matrix can result in
higher w/c at the interface and thicker duplex film [50]. A relatively thicker duplex film
can hinder the unhydrated particles to establish full contact with the fibers or aggregate.
This can result in lower concentration of ions at the interface around aggregate and fiber
and eventually a looser microstructure of the ITZ [51].

(2) Greater CH content. Due to the higher w/c at the interface compared to that of
the matrix, ettringite and CH crystals can grow in unconstrained space. A layer of CH can
precipitate initially with its c-axis preferentially oriented perpendicular to the surface of
the fiber or aggregate. The CH content at the interface is 20%-40% greater than that in a
matrix in conventional concrete [52].

(3) Lower micro-hardness. The porous zones can decrease the homogeneity of
microstructure and contact area during micro-hardness testing and hence the decreased
micro-hardness [53,54].

2.3.3. Fiber-Matrix Bond Properties. The fiber-matrix bond properties are
related to the quality of the matrix, fiber, and fiber-matrix interface. Factors influencing
such properties include matrix strength, fiber type, fiber geometry, fiber orientation, fiber
surface modification. Matrix strength is the main factor affecting bond properties. The
bond can be enhanced by the use of SCMs and high-temperature curing. Generally, the
higher the matrix strength is, the better the bond properties would be. Abu-Lebdeh et al.
[55] studied the fiber-matrix bond properties of eight very-high strength concrete

(VHSC) mixture and two normal strength concrete mixtures using single fiber pullout
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testing. It was observed that the bond strength of VHSC was increased by 92%-106%,

while the total pullout energy was enhanced by 95%-187%, in comparison to the
conventional concrete [55].

The influence of fiber type on bond properties mainly depends on the friction with
matrix, mechanical anchorage, and chemical compatibility with matrix and/or mechanical
parameters. Chan et al. [56] investigated the effect of steel, brass, and polyethylene fibers
on bond properties of three matrices with w/c of 0.4, 0.27, and 0.27. The adhesion
between the brass fiber and the matrix was found to be greater than that between the steel
fiber and the matrix.

Geometric characteristics of fiber, including fiber shape, fiber length, surface area,
aspect ratio, and roughness, also exert effect on bond properties. Generally, a good bond
exists between deformed fiber and matrix because of mechanical anchorage associated
with the deformed section [57]. This can significantly increase friction and adhesion
between the fiber and the matrix. The bond strength of corrugated fiber in ordinary
concrete was two to three times greater than that with straight fibers, and the pullout
energy was five to six times higher [58]. In UHPC, the equivalent bond strengths of
hooked and twisted fibers were about four to five times higher than that of straight fiber
[59]. Park et al. [60] investigated the influence of incorporating 0%, 0.5%, 1%, and 1.5%
micro-fibers (df = 0.2 mm, 1t=13 mm) on bond properties of UHPC embedded with four
types of macro-fibers (di > 0.3 mm, lr> 30 mm). UHPC embedded with twist fibers
demonstrated the highest equivalent bond strength of 24-34 MPa, while those with

straight or hooked fibers was 5-12 MPa.
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2.4. MECHANICAL PROPERTIES OF UHPC

Mechanical properties of UHPC, including compressive, tensile, and flexural
strengths, as well as impact properties, are discussed in the following section. The effect
of matrix strength, fiber type and content, curing regime and age, specimen size, fiber
distribution, and loading rate, on mechanical properties are discussed.

2.4.1. Compressive Strength Behavior. The compressive strength of UHPC is
governed by the fiber type, fiber content, fiber shape, curing regime, and curing age. The
development of compressive properties of UHPC is closely correlated to the degree of
hydration of cementitious materials. Habel et al. [61] reported that the 7-d compressive
strength of UHPC designed with 0.16 w/b and 11% steel fibers that subjected to heat
curing reached 140 MPa. Such value was 81% of the final strength of 175 MPa. Filho et
al. [62] studied the compressive strength of UHPC made with a w/b of 0.17 containing a
fiber content of 2%. UHPC is subjected to moist curing and its compressive strengths at
curing age of 3, 7, 28, and 180 d were evaluated. The 3-d compressive strength and of
elastic modulus were 74 MPa and 36 GPa, respectively, and increased to 161 MPa and 48
GPa at 28 d, respectively.

Zhang [63] investigated the effect of fiber content and curing regime on the
compressive strength of “green reactive powder concrete” (GRPC). The results
demonstrated that the compressive strength of GRPC improved with the increase of steel
fiber content. The compressive strength of the mixture with 4% fibers, by volume, was
30-50 MPa greater than that of the matrix without any fiber. In addition, GRPC under 28-
d of standard curing regime had the lowest strength (150 MPa), followed by that under

24-h steam curing (165-180 MPa), and then that under 8-h autoclave curing (over 200
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MPa). Yang et al. [64,65] studied the effect of different curing temperatures on

compressive strength of UHPC made with w/b of 0.15 and 2% steel fibers. It was
observed that the compressive strength under 20 °C curing was 20% lower than that
under 90 °C curing.

The fiber type is an important factor affecting compressive strength of UHPC.
The mineral and/or synthetic fibers can have limited influence on compressive strength
and elastic modulus of concrete [66]. However, steel fibers can improve compressive
strength because of the intrinsic rigidity of the steel fibers. Generally, with the increase of
steel fiber content up to 4%, the compressive strength of GRPC increased by 30 - 50 MPa
compared to that without any fiber [63]. Hassan et al. [67] reported that the use of steel
fibers had a relatively small effect on the pre-cracking of UHPC in compressive, but a
significant influence on the post-cracking behavior. The reference UHPC specimens
made without any fiber behaved elastically until the peak load and then showed a strain
softening behavior. However, strain hardening behavior was observed for UHPC
specimens.The use of hooked-end fibers in UHPC can result in the greatest compressive
strength, followed by corrugated fibers, and then straight fibers [40]. Compared to the
reference mixture made without any fiber, the incorporation of 2% hooked-end,
corrugated, and straight fibers increased the compressive strengths by 49%, 44%, and
40%, respectively. When hybrid fibers (long and short fibers) were incorporated, the
uniaxial compressive strength was shown to increase first and then decrease with the
increase of the short fiber volume. At a total hybrid fibers volume of 2%, UHPC samples
with 1.5% long fibers and 0.5% short fibers at a w/b of 0.18 obtained the greatest

compressive strength, whereas those with 2% short fibers showed the lowest value [22].
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2.4.2. Tensile Strength Behavior. Three types of testing methods, including

direct tension, splitting tension, and flexural tests, can be used to determine tensile
properties of concrete material using dog-bone shaped, cylinder, and prismatic
specimens, respectively. Habel et al. [61] studied the tensile properties of UHPC and
observed that the tensile strength after 7 d was 6 MPa, which was 60% of the final stable
strength. Charron [68] studied the tensile behavior of notched-prism UHPC specimens
using direct tensile test and found the maximal tensile strength at 28 d was 11 MPa. Kang
et al. [69] studied the tensile fracture properties of UHPC with fiber volumes ranging
from 0% to 5% and indicated that the tensile strength of UHPC linearly increased with
the increase of fiber volume. Wille et al. [70] developed UHPC strain hardening behavior
with 28 - d compressive strength of 200 MPa using 2.5% short and smooth steel fibers.
The UHPC possessed a post-cracking strength of 14.2 MPa in tension and had a strain
capacity of 0.24%. However, the authors reported that it is difficult to obtain strain
capacity more than 0.5% and tensile post-cracking strength over 15 MPa using mono-
fiber.

Park et al [71] investigated the effect of a combination of macro-fiber and micro-
fiber on the tensile behavior of UHPC. The micro-fiber volume varied from 0 to 1.5%,
while the macro-fiber volume was fixed at 1.0%. The type of macro-fiber played a
significant role in determining the overall shape of tensile stress-strain curves. UHPC
made with twisted macro-fibers showed the best tensile behavior, while those with long

smooth macro-fibers exhibited the worst behavior.
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2.4.3. Flexural Strength Behavior. The flexural properties are highly affected

by the fiber type, fiber content, fiber blending, size effect, fiber distribution and
orientation, loading rate, and placing methods. Huang et al. [72] showed that the use of
2% polyethylene fibers increased the flexural strength by 47% compared to the reference
specimen. Birol et al. [73] proposed that the characteristic of the flexural load-deflection
curve of UHPC was mainly affected by fiber type and fiber volume. Wu et al. [40]
investigated the effect of different fiber volumes (0, 1%, 2%, and 3%) and shapes
(straight, corrugated, and hooked-end) of steel fibers on flexural properties of UHPC. The
results indicated that the incorporation of 2% straight, hooked-end, and corrugated fibers
increased the 28-d flexural strength of UHPC subjected to standard curing by 46%, 81%,
and 61%, respectively, compared to the specimens without any fiber.

Fiber blending can improve the flexural performance of UHPC due to combined
functions from each type of fiber. For example, for UHPC made with short and long
fibers, after the first-cracking of the matrix, the initiated micro-cracks were initially
restrained by the short fibers. As the micro-cracks propagate further, the short fibers are
pulled out from the matrix. The loads are mainly sustained by the long fibers. This means
that more time and energy are needed to fracture the material compared to UHPC made
with mono-fiber. Fiber blending in normal strength matrices produced favorable blending
effect on the mechanical performance in comparison with FRC with mono-fiber [74,75].
Kim et al. [76] found that the flexural performance of UHPC made with hooked fiber was
the greatest, followed by that made with twisted fibers, and then that with long smooth
fibers. Hai et al. [77] showed that steel and polyvinyl alcohol fibers efficiently improved

the flexural and compression ratio by 40%.
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The method of casting of UHPC can affect fiber distribution and hence

mechanical performance [78,79]. Kang et al. [80] investigated the effect of placing
direction on the flexural strength of UHPC and found that UHPC placed parallel to the
longitudinal direction of presmatic samples exhibited approximately 6% greater initial
cracking strength and 60% greater ultimate flexural strength than UHPC placed
transversely. Barnett [79] evaluated the flexural strength of UHPC by placing round
panels in three different casting methods and found the panels cast from the center
showed the highest flexural strength.

The specimen size also has a significant effect on flexural properties of UHPC
because of the size effect, where larger specimens can have greater probabilities of weak
zones. Nguyen et al [81] investigated the flexural behavior of three prismatic UHPC
specimen sizes measuring 50 x 50 x 150, 100 x 100 x 300, and 150 x 150 x 450 mm.
Results showed that the equivalent flexural strength of UHPC decreased with the increase
of specimen size.

2.4.4. Impact Properties. Given its high resistance to impact loads, UHPC can
be used in structures requiring high resistance to explosion and penetration, such as
protective shelter of military engineering application [82]. Two common methods to
measure the dynamic behavior of concrete are drop weight and split Hopkinson pressure
bar (SHPB) tests. The drop weight test has the ability to reproduce conditions under
which real-life component would be subject to impact loading [83]. Habel et al. [84]
studied the impact tensile performance of UHPC using the drop weight tests and found
the strength increased with the increase of strain rate, showing strain hardening

characteristics up to approximately de/dt = 2 s,
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Because impact performance obtained through drop weight testing is greatly
influenced by the configuration, such as drop weight and speed, specimen size, and
support stiffness, some researchers used the SHPB testing instead. Rong et al. [85] stated
that the dynamic compressive strength of UHPC was sensitive to the strain rate and
increased with the increase of fiber volume. The non-fibrous UHPC matrix was found
crushed, while the UHPC with 3% or 4% of steel fibers remained intact under the same
loading rate. Zhang et al. [63] found the dynamic tensile strength of UHPC increased
obviously with the increase of impact velocity, ranging from 4 to 14 m/s. The dynamic
tensile strength of GRPC with 4% steel fibers reached 15 MPa, which was 50% greater
than the static tensile strength.

Fiber hybridization can also improve the dynamic mechanical properties. For
example, high modulus fiber plays a significant role in enhancing the tensile strength,
while low modulus fibers contribute a lot in ductility [86]. Long steel fibers play a
dominated role in improving the impact resistance capacity of UHPC [87]. At a total fiber
volume of 2%, UHPC reinforced with 1.5% long fibers (13 mm) and 0.5% short fibers (6
mm) demonstrated the best static and dynamic compressive behaviors, which were 19%
and 14%-24%, respectively, greater than those with 2% short fibers [88]. However,
comparable dynamic compressive properties were observed between UHPC samples with
2% long fibers and those with 2% short fibers due to very fast loading rate and

synergistic effect associated with fiber geometry, spacing, and quantity.
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2.5. FIBER STRENGTHENING AND REINFORCING MECHANISMS

Two types of fiber strengthening and reinforcing theories can be used to
investigate the mechanical properties of a given composite material, including the
composite theory and the fiber space theory.

2.5.1. Theory of Composite. UHPC is a typical composite material, which
consists of a matrix, fibers, and interface between the two. Based on this, the mechanical
properties can be investigated using the theory of the composite material. This theory can
be used to calculate tensile stress, elastic modulus of FRC. Figure 2.4 illustrates fiber-
reinforced concrete under tensile stress. The properties of the composite material are the
combined effect exerted from each component. The hypotheses for the composite theory

are stated as follows:
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Figure 2.4. Fiber-reinforced concrete under tensile stress

(1) Fibers are continuously and homogenously dispersed in the matrix. It is

assumed that their orientation is parallel to the loading direction.
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(2) Good bond exists between the fiber and matrix, suggesting the same strain
between them with no slip.

(3) Both the fiber and matrix present elastic deformation and have the same lateral
deformation.

According to the basic hypotheses, when external loads are applied to the fibers,
the maximum tensile stress and the elastic modulus can be calculated according to
Equations (2.1) and (2.2), respectively:

fo=fV,+fV =1V, +f (1-V,) 2.1)

E, =EV, +E\V, =EV, +E,(1-V,) 22)

where fc (MPa) and Ec (MPa) are the maximum tensile stress and elastic modulus of FRC
(composite material), respectively; fm (MPa), Em (MPa), and Vm (unit-less) are the tensile
stress, elastic modulus, and volume of the matrix, respectively; fr (MPa), Er(MPa), and Vs
(unit-less) are the stress, elastic modulus, and volume of the fiber, respectively.

Equation (2.2) indicates that the deformation of the fiber equals to that of the
matrix in the elastic range. Hence, when the orientation of the fiber is similar to the
loading direction, the tensile stress (or the elastic modulus) of the concrete is equal to the
sum of the matrix stress and fiber stress (or the elastic modulus of the matrix and steel
fiber) multiplying their volume.

However, these hypotheses are ideal because fibers are randomly and disorderly
oriented in composite material, such as fiber-reinforced material. Therefore, the concrete
heterogeneity, the length and orientation of short fibers can affect the mechanical
properties of FRC. The bond properties between the fiber and matrix need to be taken

into account. Therefore, an improved model was proposed by Naaman [89], in which the
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tensile stress of the composite material is assumed to be the superimposed stresses of the
fiber and the matrix. The post-cracking tensile strength could be calculated using

Equation (2.3):
f.=f . (1-V,)+nV, % (2.3)

where fc (MPa) is the average stress of the composite material; fm (MPa) is the stress of
the matrix; Vs (unit-less) is the fiber volume; 1/d (unit-less) is the aspect ratio; z is the
average interface shear stress (MPa), which can be determined by fiber pullout testing; #
(unit-less) is the reduction factor, n = nin2n3; 11, 12, and #3 are the direction coefficient,
the effective coefficient in the loading direction, and the reduction factor of the fiber,
respectively. The stress after cracking of matrix is mainly sustained by the fiber,

therefore, the stress could be as follows:

|
f =ncV, — 2.4
c =Nt g (2.4)

2.5.2. Fiber Space Theory. The fiber space theory was proposed by Romualdi
et al. [90,91], which is based on the linear elastic fracture mechanics. This theory can
explain how the fiber restrains crack initiation and propagation. The theory assumes that
the failure of concrete results from interior defects, such as micro-cracks and pores,
which can produce crack tip stress concentration under external forces. With the increase
of stress, the crack can extend further into large cracks, thus resulting in the destruction
of concrete members. Romualdi assumed that continuous fibers are evenly distributed
along the loading direction with a chessboard-shaped in the matrix [90,91]. The model
shown in Figure 2.5 can be used to illustrate the increased strength and main cause for

crack propagation in FRC. As shown in Figure 2.5(a), a crack with a radius of a is
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surrounded by four fibers with a fiber spacing of S. Under tensile loads, regions of the
cracks around the fiber can produce cohesive force distribution (z), as shown in Figure
2.5(b). The cohesive force on the crack tip can yield reverse stress field, which can

reduce the degree of stress and eventually constraint the development of cracks.
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(a) Fiber constraint model  (b) A-A section

Figure 2.5. Crack restraining mechanism of fiber reinforcement in fiber-reinforced
concrete (modified based on [90])

The fiber space can be determined based on the fiber geometry and volume used
in the fiber-reinforced concrete. The tensile strength can be calculated according to an
relative equation related to fiber space. Generally, the greater the fiber space is, the lower
the tensile strength would be.

Although this theory is simple without the need of material properties, it is
difficult to obtain the fiber spacing of composite material. Fiber spacing is a combined
effect of multiple factors, including fiber shape, length, volume, orientation, mixing and
vibrating processes, and dispersing technology. Therefore, the actual tensile strength can

vary with the change of the factors.
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2.6. CONCLUDING REMARKS AND RESEARCH NEED

Based on the results published in the literature, the following conclusions can be
drawn:

2.6.1. Concluding Remarks. (1) Fiber-matrix bond properties play a dominated
role in enhancing tensile/flexural strength and toughness of UHPC. The main factors
affecting this behavior involve the matrix strength, use of SCMs, curing regime, fiber
geometry, fiber distribution, and specimen size. The densification of the matrix is the
most fundamental and practical approach to enhance the fiber-matrix bond properties.
However, its efficiency to enhance fiber-matrix bond and mechanical properties of UHPC
is lower than those improved with the use of deformed fibers.

(2) The compressive strength of UHPC is dependent on the curing regime and
time, fiber content, fiber type and geometry, and mixture composition. UHPC with 3% or
4% steel fibers after 28 d standard room curing can develop a compressive strength over
150 MPa. UHPC subjected to 24-h steam curing and 8-h autoclave curing can obtain
compressive strength of 165-180 MPa and over 200 MPa, respectively.

(3) The incorporation of mineral and synthetic fibers has limited influence on
compressive strength of UHPC, whereas steel fibers can increase the compressive
strength because of their intrinsic rigidity. The addition of micro-fibers can favorably
affect the strain hardening and lead to multiple cracking behavior. The use of various
sizes and types of fibers can enhance strength and strain capacity due to combined
functions exerted from each type of fiber. The use of deformed fibers can significantly
increase the flexural and tensile strengths of UHPC. However, the large amount of fibers

prone to cause fiber agglomeration issues, and thus reversely affecting the mechanical
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properties. Therefore, designing UHPC with appropriate steel fiber content and adequate
rheology is essential to effective fiber orientation and improved mechanical properties.

(4) The dynamic response of UHPC are found to be sensitive to the applied strain
rate. The incorporation of steel fibers can improve the dynamic properties. The UHPC
matrix made without any steel fiber is found shattered after dynamic loading. On the
other hand, UHPC made with steel fibers remains essentially intact under the same
dynamic compressive loading. UHPC with hybrid steel fibers shows better impact
performance than those with mono-fiber. At a total fiber volume of 2%, UHPC with 1.5%
long fibers and 0.5% short fibers exhibits the best mechanical properties.

(5) The theory of composite and fiber space theory can be employed to
understand fiber strengthening and reinforcing mechanisms. The former considers the
mechanical properties of the composite material consist the addition of actions from each
of its components: matrix, fiber, and fiber-matrix interface. The orientation of fiber
distribution needs to be considered in UHPC composite because steel fibers are not
ideally oriented to the loading direction. The fiber space theory assumes that the tensile
strength of FRC is related mainly to fiber spacing. Fiber spacing is a combined effect of
multiple factors, such as flowability, fiber length, volume, orientation, which changes
with these factors and is difficult to determine in a real concrete.

2.6.2. Research Need. The literature review on the microstructure, fiber-bond
properties, mechanical properties, and fiber strengthening and toughening mechanisms
demonstrate perceived lack information and research need in the following topics:

(1) Different types and contents of SCM and nano-particles can remarkably affect

the hardening process of cement-based materials. A perceived lack of information exists
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about the effect of SCMs and nano-particles on strength development of UHPC matrix

and fiber-matrix bond properties.

(2) The existence of ITZ is unavoidable, and the intrinsic nature of a composite
material associated with different mixture compositions varies accordingly. There is a
need to optimize the fiber-matrix bond and microstructure of UHPC that are closely
related to macro-properties, such as flexural and tensile strengths and toughness.

(3) Among the existing research on mechanical properties of UHPC, factors such
as fiber type, fiber volume, fiber shape, fiber orientation, fiber blending, and curing
regime, have been systematically evaluated. However, most of the research involves
quantitative comparison of various factors. There is a need to clarify the role of the fiber-
matrix bond properties on mechanical properties of UHPC.

(4) Fiber strengthening and reinforcing mechanisms are well-documented for
conventional concrete. Whether those theories could be applied to UHPC or need to be
updated with taking the consideration of new parameters, such as fiber geometry
coefficient, remains unknown.

Therefore, it is necessary to examine the mechanical properties of UHPC by
taking into consideration of the microstructure of the UHPC matrix, fiber-matrix interface,
and fiber-matrix bond characteristics. Of great interest is the degree of enhancement of
tensile/flexural strength and toughness of UHPC through optimization from the nano- and

micro-scales.
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3. RAW MATERIALS, MIXTURE DESIGN, AND TESTING METHODS

3.1. CHARACTERISTICS OF RAW MATERIALS

Characteristic of raw materials, such as cementitious materials, aggregate, steel
fiber, and superplasticizer, are shown in the following part.

3.1.1. Cementitious Materials. Portland cement P.1. 425 (similar to ASTM
C150 Type | cement) and Type 111 cement (Section 5) with surface areas of 336 and 465
m?/kg, respectively, were used. The P.1. 425 has 3-d and 28-d compressive strengths are
26 and 57.2 MPa, respectively.

Silica fume (SF) with a particle size in the range of 0.02-0.28 um was used. Its
BET specific surface area was 18,500 m?/kg. Slag with density and specific surface area
of 2,900 kg/m? and 410 m?/kg, respectively, was used. Fly ash (FA) with a specific
surface area of 360 m®/kg was used. Nano-CaCOs3 (NC) and nano-SiO2 (NS) were used,
as shown in Figure 3.1. The nano-CaCOzg has a size of about 15 to 105 nm with 97.8%

calcite content. The nano-SiO2 has a size of 5 to 35 nm with 99.8% SiO2 content.

MS&T 5.0kV 5.1mm x50.0k SE(U)

(@) NC particles (b) NS particles

Figure 3.1. Morphology of nano-particles
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3.1.2. Sand. Natural river sand with a fineness modulus of 3.0 was used.

Particles with size greater than 2.36 mm were removed by sieving.
3.1.3. Steel Fiber. Asshown in Table 3.1, three types of brass-coated steel fibers,
including straight, hooked, and corrugated fibers with diameters of 0.2 mm and lengths of

13 mm, were selected for investigation. The tensile strength is approximately 2,800 MPa.

Table 3.1. Geometries of three selected fibers

Shape Geometry Section  Details
) l—|—>| d I =13 mm,d=0.2 mm
Stralght | <
Hooked le—|—>| d I=13mm,d=0.2mm, h=0.2mm
ooke = ” e
—»>| |
l—|—>| d | =13mm,d=0.2mm, p=6mm
Corrugated o -
-» p |e

3.1.4. Superplasticizer. A polycarboxylate-based superplasticizer (SP) with a
solid content of 20% and water-reducing efficiency greater than 30% was used. To
investigate the effect of different binder contents, such as silica fume, nano-CaCOs, and
nano-SiOz contents, on heat of hydration and flowability of UHPC matrix (without fiber),
the SP content was fixed at 2%. The steel fiber can decrease the flowability of UHPC
mixture and hence reducing the tensile and flexural properties of UHPC through altering
the distribution of fiber. For UHPC made with steel fiber, the SP was adjusted in order to
achieve appropriate workability without any vibration consolidation. The mini-slump

flow of UHPC mixtures was adjusted in the range of 240 to 280 mm.

www.manaraa.com



34
3.2. MIXTURE PROPORTIONING

The mixture proportion in this research includes two phases. Initially, in order to
investigate the effect of binder content on flowability, microstructure, and fiber-matrix
pullout behavior, non-fiberous UHPC matrix (without fiber) was used.

3.2.1. UHPC Matrix without Steel Fiber. These mixtures include four series,
such as silica fume, slag and fly ash, nano-CaCOs, and nano-SiO:2 series. The water-to-
cementitious materials ratio (W/CM) was determined at 0.18.

3.2.1.1. Silica fume series. The mixture proportioning is shown in Table 3.2. In
the silica fume series, 0, 5%, 10%, 15%, 20%, and 25% of silica fume by the mass of
binder were used. They were designated as U0, U5, U10, U15, U20, and U25,

respectively.

Table 3.2. Mixture proportioning of UHPC matrix with different silica fume contents

Code  W/CM Mass of ingredient (kg/m®)
Water Sand Cement  SF SP

uo 0.18 177 1079 1079 0 21.6
us 0.18 177 1079 1025 54 21.6
ul10 0.18 177 1079 971 108 21.6
uils 0.18 177 1079 917 162 21.6
u20 0.18 177 1079 863 216 21.6
u25 0.18 177 1079 809 270 21.6

3.2.1.2. Nano-CaCOs series. In the nano-CaCOs series, mixtures containing 0,

1.6%, 3.2%, 4.8%, and 6.4% nano-CaCOs, by the mass of cementitious material, were
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used. They were designated as NCO (U20), NC1.6, NC3.2, NC4.8, and NC6.4. Table 3.3

summarizes the mixture proportioning.

Table 3.3. Mixture proportioning of UHPC matrix with different nano-CaCOs and nano-
SiO2 contents

Code W/CM Mass of ingredient (kg/m®)
Water Sand Cement SF NC SP

NCO 0.18 177 1079 863 216 0 21.6
NC1.6 0.18 177 1079 846 216 17.3 216
NC3.2 0.18 177 1079 829 216 345 216
NC4.8 0.18 177 1079 811 216 518 216
NC6.4  0.18 177 1079 794 216 69.1 216
NS0.5 0.18 177 1079 858 216 54 216
NS1.0 0.18 177 1079 852 216 10.8 21.6
NS1.5 0.18 177 1079 847 216 16.2 21.6
NS2.0 0.18 177 1079 842 216 216 216

3.2.1.3. Nano-SiO> series. In the nano-SiO2 series, mixtures containing 0, 0.5%,

1.0%, 1.5%, and 2.0% nano-SiO2, by mass of cementitious material, were used. They

were designated as NSO (U20), NS0.5, NS1.0, NS1.5, and NS2.0.

3.2.2. UHPC Reinforced with Steel Fiber. Steel fibers with a volume of 2%

were incorporated. The dosage of SP in the UHPC mixture made with 2% steel fibers was

adjusted to obtain a mini-slump spread of 240-260 mm without any consolidation

procedure.

3.2.2.1. Silica fume series. UHPC mixtures containing 0, 5%, 10%, 15%, 20%,

and 25% silica fume, by mass of cementitious material, and 2% steel fibers were
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prepared. They were designated as U0-2, U5-2, U10-2, U15-2, and U20-2. Table 3.4

summarizes the mixture proportioning.

Table 3.4. Mixture proportioning of UHPC with different silica fume contents

Code  W/CM Mass of ingredient (kg/m?®)
Water Sand Cement SF Steel fiber
U0-2 0.18 177 923 1079 0 156
U5-2 0.18 177 923 1025 54 156
u10-2  0.18 177 923 971 108 156
u1s-2  0.18 177 923 917 162 156
U20-2 0.18 177 923 863 216 156
U25-2 0.18 177 923 809 270 156

3.2.2.2. Nano-CaCOs series. The mixture proportioning of the UHPC made with

different NC contents is summarized in Table 3.5.

Table 3.5. Mixture proportioning of UHPC with different NC and NS contents

Mass of ingredient (kg/m®)

Item Code  W/CM i
Water Sand Cement SF NC NS Fiber
Ref. NCO0-2 0.18 177 923 863 216 O 0 156
NC1.6-2 0.18 177 923 846 216 173 O 156
_ NC3.2-2 0.18 177 923 829 216 345 0 156
NC series
NC4.8-2 0.18 177 923 811 216 518 O 156
NC6.4-2 0.18 177 923 794 216 691 O 156
NS0.5-2 0.18 177 923 858 216 O 54 156
_ NS1.0-2 0.18 177 923 852 216 0 108 156
NS series
NS1.5-2 0.18 177 923 847 216 0 16.2 156
NS2.0-2 0.18 177 923 842 216 0 216 156
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3.2.2.3. Nano-SiO; series. The mixture proportioning of the UHPC made with

different NS contents is also summarized in Table 3.5.
3.2.2.4. UHPC with optimized composition. Mixtures proportioned with slag,
fly ash, or nano-particles with good mechanical properties and fiber-matrix bond are used

to investigate the static and impact mechanical properties of UHPC (Table 3.6).

Table 3.6. Mixture proportioning of UHPC with optimized composition of different
SCMs and/or nano-particles

Water Sand  Cement SF SL FA NC NS Steel fiber

code (kg/m?)  (kg/m®)  (kg/m®)  (kg/m®)  (kg/m®)  (kg/m®) (kg/m®) (kg/m®)  (kg/m?)
U20-2 177 923 863.2 215.8 0 0 0 0 156
SL20-2 177 923 647.4 215.8 215.8 0 0 0 156
FA20-2 177 923 647.4 215.8 0 215.8 0 0 156
uT-2 177 923 431.6 215.8 215.8 215.8 0 0 156
NC3.2-2 177 923 828.7 215.8 0 0 34.5 0 156
NS1.0-2 177 923 852.4 215.8 0 0 0 10.8 156

3.3. UHPC MIXTURE PREPARATION AND CURING

The mixing procedure was as follows: (1) dry cementitious materials and sand
were mixed at a low speed for 3 min; (2) mixing water and SP were premixed and added
at a low speed for 6 min then 1 min at a high speed; (3) fibers were introduced slowly if
needed at a low speed and mixed for another 6 min; and (4) the material was obtained
with good flowability. All the mixtures were cast into molds for the testing of flowability
and mechanical properties. Specimens were then kept in a room at 20 °C and relative
humidity (RH) greater than 95% for approximately 24 h. They were then demolded and

cured in lime-saturated water at 20 °C until specified ages (1, 3, 7, 28, and 91 d).
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3.4. TESTING METHODS

Testing methods including flowability, fiber-pullout test, microstructure
characterization, and mechanical properties test are presented in the following section.

3.4.1. Flowability. The fresh mortar was filled into a mini cone placed on an
automatic jump table [92]. The mini cone has an upper diameter of 70 mm, a lower
diameter of 100 mm, and a height of 60 mm. After the mini cone was vertically lifted,
two diameters perpendicular to each other of spread of mixture were then determined and
mean value was reported.

The SP dosage in non-fibrous UHPC matrix was fixed at 2% in order to
investigate the effect of cementitious materials content on heat of hydration. In the
presence of steel fibers, the mini-slump flow of UHPC was adjusted to 240-280 mm by
changing the SP dosage without consolidation procedure.

3.4.2. Calorimetry Analysis. A TAM air isothermal calorimeter was used to
measure the heat of hydration of the binder mixtures at a constant temperature of 20 °C.
This instrument has eight sample chambers fitted inside one thermostat to make eight
measurements simultaneously. Based on the mixture proportion and sample preparation
procedure as described above, corresponding cement pastes were prepared.
Approximately 4 g paste of each mixture was weighed and placed into a sealed glass
ampoule. Then they were placed into the isothermal calorimeter for measuring heat of
hydration for 60 h.

3.4.3. Fiber Pullout Test. Dog-bone shape specimens were used to measure the

pullout behavior of four embedded steel fibers within mortars, as shown in Figure 3.2.
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The specimen was divided into two halves, namely a pullout half and a fixed half using a
plastic clip at the center with four fibers perpendicularly installed to it. For the fiber
holding and casting process, plastic clips with specified dimensions corresponding to the
molds were manually cut first. The plastic clips were punched to get four holes with an
evenly distributed space of 15 mm, as shown in Figure 3.2(a). Four fibers were prepared
to go through the four holes. By using a self-made bamboo substrate with designed four
vertical holes with a depth of 5 mm, the fibers length (5 mm in the pullout half) and
orientation were ensured. After that, the fibers were fixed in the plastic clips by using
super glue. Then the plastic clips were first put into two parallel slots located at the center
of steel mold. In order to completely prevent adhesion of the two halves of the matrix, a
plastic film was used to cover the whole casting zone in the mold through crossing the
plastic clip. The matrix was then cast into the mold. According to the standard [93], the
embedded length of fiber (lem) at the pullout section should meet the following
requirements:

|em < O.4|f (31)

lem > ft deq /fm (3.2)
where lem (Mmm) is the embedded fiber length at the pullout half; It (mm) is the total length
of steel fiber; ft (MPa) is the tensile strength of steel fiber; deq (Mmm) is the diameter of
steel fiber; and fm (MPa) is the compressive strength of UHPC matrix.

Through calculation, the fiber in length in the pullout section was set to 5 mm
compared to 8 mm in the fixed section. An MTS testing machine with 20 kN load cell
was used to carry out the pullout testing [93], as shown in Figure 3.2(b). The loading rate

was 1 mm/min. Only the pullout strength and pullout energy of those samples with all
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four fibers pulled out from the short embedment length section were used. For each

matrix, five specimens were tested. The bond strength was calculated as follows:

T — Pmax (3 3)
max n]ZdI .

where max (MPa) is the bond strength of embedded fibers based on the maximum pullout
load; Pmax (N) is the maximum pullout load; d (mm) is the diameter of a single fiber; |
(mm) is the embedment length of the fiber in pullout half (5 mm); n is the number of

fibers embedded in a dog-bone specimen (n = 4).

L~
Pullout
half

L]
Fixed

i - S

(a) Size of dog-bone shaped specimen (b) Pullout testing apparatus

Figure 3.2. Hlustration of dog-bone shaped specimen and pullout testing apparatus

3.4.4. Compressive and Three-Point Flexural Strengths Tests. Specimens
measuring 40 x 40 x 160 mm were cast for the determination of compressive and flexural
strengths. Three samples of each batch were tested. The bending and compressive
strength tests of cement mortar were conducted [94]. The 3-point bending test was

conducted using an MTS testing machine with a displacement rate of 1 mm/min at a span
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of 100 mm. A 500 N preload was applied to allow accommodation of the loading
apparatus. Deflections were measured using two linear variable differential transducer
(LVDTs). The flexural test was continued until the mid-span deflection reached 10 mm.
Then the six broken specimens were used to examine the compressive strength. The mean
values of three flexural strengths and six compressive strengths were reported.

3.4.5. Four-Point Flexural Properties Test. The 28 d four-point flexural
properties of UHPC mixtures were in accordance with ASTM C 1609 (Section 5). The
used beam specimens were 419 x 76 x 76 mm in dimension and have a span of 305 mm.
Three beams were tested for each mixture. The MTS load frame was used to apply loads
at a controlled displacement rate of 1 mm/min. The deflection of the beam specimens and
settlement of the two roller supports were recorded using LVDTSs. The tests were
continued until the mid-span deflection reached approximate 3 mm for UHPC mixtures.

The four-point flexural strength can be calculated using Equation (3.4).

F = PL/(bd?) (3.4)
where P (N) is the peak load; L (mm) is the span length; b (mm) is the beam width; and d
(mm) is the beam depth.

3.4.6. Tensile Properties Test. Direct tensile tests were conducted using dog-
bone specimens at a displacement rate of 0.5 mm/min, as shown in Figure 3.3. The
specimens have a length of 526 mm and a thickness of 25 mm with a narrow neck of 175
mm in length. Two LVDTs were used to measure the deformation over a gage length of
160 mm, while the applied load was recorded by a load cell. Only those specimens with
cracking occurred in the middle of gauges were used for the determination of final tensile

strength.
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Figure 3.3. Hlustration of tensile test

3.4.7. Drop-Weight Impact Flexural Properties Test. A drop weight impact
testing machine (Instron, CEAST9340) with a maximum load of 20 kN, as illustrated in

Figure 3.4, was used to conduct the impact flexural properties.

Figure 3.4. lllustration of drop-weight impact system
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3.4.8. Thermal Gravimetric Analysis. Thermo-gravimetric (TG) and derivative
thermo-gravimetric (DTG) analyses were used to quantitatively estimate the amount of
Ca(OH)2 using a Netzsch STA 409PC equipment. Samples from the surface layer of
UHPC specimens were firstly broken into 2.5-5.0 mm pieces by a hammer. Then
the samples were put into a vacuum drying chamber to get a constant mass. After that,
these dried samples were ground to powder and sieved on a square mesh sieve with
diameter of 45 um. The tested samples, weighing up to 10 mg, were heated from 0 to
1200 °C under nitrogen gas flow at a constant heating rate of 10 °C per minute. The
hydration products of Ca(OH)2 decomposed at around 430-550 °C. The proportion of CH
content to residual mass was then calculated.

3.4.9. Pore Structure Observation. Mercury intrusion porosimetry (MIP) was
used to test the pore structure of harden concrete specimens. The mercury porosimeter
(Auto Pore Master-60) is capable of generating 0-68,000 psi pressure and measuring 3
nmM-380 um pore diameter. Samples for MIP test were broken into 3.5-5.0mm pieces and
soaked in acetone to stop the further hydration of cement. Then they were dried at 60 °C
in oven for 24 h before examination. The experiments were carried out under pressures of
40 and 60000 psi. Full-scan auto mode was selected with contacted angle and surface
tension of 140° and 106.7 psi-um, respectively.

3.4.10. 3D Micro-Tomography. The three-dimensional (3D) internal structure,
especially spatial distribution of air voids, of the UHPC matrix with an embedded fiber
was evaluated using 3D micro-tomography. This testing was performed at the
Technological Institute in Functional Safety Testing, itt Fuse, at the Unisinos University

in Brazil. The test was performed using a tomography with 160 kV cannon power and a
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maximum resolution of 0.5 um [95]. The images of the internal microstructure were
captured, and the void content was calculated based on the detected materials and void
volumes.

3.4.11. Scanning Electron Microscopy (SEM) Observation. Scanning electron
microscopy (SEM) was employed to study the microstructure of UHPC. Small samples
with an embedded fiber at an approximate size of 15 x 15 x 15 mm were taken by cutting
the dog-bone shaped specimens for the BSEM examination. This was done shortly after
the pullout test. The broken samples were soaked in acetone to stop further hydration and
then dried at 60 °C in a vacuum oven for 24 h. They were ground to obtain a relatively
smooth surface, then mounted in epoxy resin and subjected to further grinding and
polishing to ensure smooth surface quality. Silicon carbide (SiC) papers with grit sizes of
200, 400, 600, 800, and 1200 were sequentially selected for initial polishing. An ultra-
fine diamond slurry with a size of 0.05 um was introduced for the final polishing.
Ultrasonic bath cleaning was used to remove all dust and diamond particles. The samples
were kept in an air-tight container until the time of testing.

The polished samples were coated with carbon and were examined using a
Hitachi S4700-SEM with a back-scattered detector in high vacuum mode. All images
were taken at a resolution of 2560 x 1920 under a voltage of 15 kV. Elemental mapping
was used to study the spatial distribution of the various elements, such as Si, Ca, Fe, Mg,
O, C, and Al at the fiber-matrix interface.

3.4.12. X-Ray Diffraction (XRD) Analysis. UHPC matrix samples were taken

from the dog-bone specimens after pullout testing for X-ray diffraction (XRD) analysis.
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The samples were soaked in acetone to stop cement hydration, then dried at 60 °C for 24

h and ground into powder. CuKa X-ray diffraction was used to characterize the
crystalline phases of the sample. The experiments were carried out at 20 value from 5° to
65° with a scan rate of 2°/min.

3.4.13. Micro-Hardness Measurement. Micro-indention is based on applying a
static load for a known period of time and measuring the response in terms of the
indentation size. In this study, a 498 mN load was applied to the same samples for BSEM
testing for 10 s. Measurement was performed within a distance of 240 um from the edge
of embedded fiber. Four replicate indentations with a constant distance of approximately

40 pm to the previous indentation were performed, as shown in Figure 3.5(a).

40pm
&

(@) Hlustration of measurement (b) Indention image

Figure 3.5. Micro-hardness testing for UHPC matrix with an embedded fiber

During the indention process, areas with sand were avoided to ensure precise
comparison of results from different matrices. A typical microscope image during testing
is shown in Figure 3.5(b). Means of four values of micro-hardness or Vickers hardness

(HV) situated along a given distance from fiber edge was determined and reported.
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4. INFLUENCE OF SILICA FUME CONTENT ON STENGTH AND
DEVELOPMENT MICROSTRUCTURE OF UHPC MATRIX

4.1. BACKGROUND

The very low w/b and dense microstructure allow the compressive strength of
UHPC matrix generally over 120 MPa and superior durability. However, the higher the
compressive strength is, the more brittle the matrix becomes. Fiber has been proven as an
essential part for UHPC [96,97]. With the incorporation of proper types of fibers, the
initiation, propagation or coalescence of cracks can be efficiently controlled. Several
types of fiber, such as carbon, steel, and polypropylene fibers have been used in UHPC.
Steel fiber is the most commonly used one because of its superior tensile strength over
2000 MPa. The incorporation of such steel fiber ensures satisfactory mechanical
properties, such as tensile, bending, and shear strengths of UHPC [59,98]. However, a
bond failure associated with the fiber-matrix interface is the primary reason leading to the
failure of the whole structure [99]. It was reported that there exist two different interfacial
failure modes when steel fibers are pulled out from matrix [100]. One is adhesive failure
often occurring at actual fiber-matrix interface, while the other one is adherent failure
taking place in the matrix. Both failure modes would directly lead to underutilization of
fiber or matrix without fully exerting their own mechanical capacity, and eventually
result in cracking of composites. Therefore, improvement in the bond properties between
fiber and matrix is of great significance.

The performance of fiber reinforced composites is governed by the quality of
matrix, geometry, and type of fiber, and quality of interfacial transition zone (ITZ)

between the fiber or aggregate and matrix [100,101]. Several strategies can be used to
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improve the bond properties at the fiber-matrix interface, including: (1) densification of
the cementitious matrix and 1TZ [101]; (2) use of deformed fibers [40]; (3) surface
treatment of fibers, such as plasma treatment for polyethylene fibers [100]. Because ITZ
has a thickness varying between 10 and 100 um, and contains large preferentially calcium
hydroxide (CH) crystals and high porosity [102,103], it is usually recognized as the
weakest zone in concrete [104]. The basic strategy to improve the bond properties is
densification of UHPC mixture and the ITZ as well. Many densification methods have
been proposed, which include a reduction in w/b, prolongation of moist curing, heat
curing, and incorporation of mineral admixtures [102,105]. Incorporation of silica fume is
one of the most effective and economic methods because of its fine particle size and high
pozzolanic activity [106]. These two characteristics of silica fume can lead to a
remarkable reduction in porosity and permeability, as well as enhancement in strength
and durability [106].

Extensive researches have been conducted on UHPC, but few of them are related
to the microstructure development, the compressive and flexural strength, and the
relationship between them. In this paper, the effect of silica fume content on heat of
hydration, compressive and flexural strengths of non-fibrous UHPC matrix at a fixed SP
dosage were investigated. Thermo-gravimetry (TG) analysis and mercury intrusion
porosimetry (MIP) were used to characterize hydration products and pore structure of the
matrix. Its goal is to provide important implications to improve the tensile and toughness

properties of UHPC.
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4.2. EFFECT OF SILICA FUME CONTENT ON HEAT OF HYDRATION

OF UHPC MATRIX

Figure 4.1 shows the rate of heat evolution of non-fibrous UHPC matrix with and

without silica fume.

Heat evolution rate (kJ/kg.h)
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Figure 4.1. Heat evolution rate of UHPC matrix with different silica fume contents

As can be seen from Figure 4.1(a), compared to U0, the duration of the dormant

period of UHPC matrix containing silica fume decreased from 12 to 9 h or less. As

hydration proceeded, U25 samples first showed the accelerated hydration peak, followed

by U20, U15, and U10. However, the accelerated hydration peak of UO was delayed to 28

h. As illustrated in Figure 4.1(b), the heat of hydration of UHPC matrix incorporated with

silica fume evolved quickly, and the heat generation was faster than that of the reference

sample UO. This is because, on the first contact of cement with water, Ca?* and OH" ions

are rapidly released from the surface of cement particles. When silica fume is
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incorporated, the dissolution of SiO4* ion can absorb Ca®* and OH- ions to form calcium
silicate hydrate (C-S-H), which increases the rate of heat and amount of heat evolution

[107].

4.3. EFFECT OF SILICA FUME CONTENT ON COMPRESSIVE AND
FLEXURAL STRENGTHS OF UHPC MATRIX

The influence of silica fume content on compressive and flexural strengths of
UHPC matrix are compared in Figure 4.2. The silica fume content had a significant effect
on compressive and flexural strengths at early ages up to 7 d. After 7 d, the increase in
compressive strength was only about 11%. For the flexural strength, it increased
significantly from 1 to 3 d. However, it remained almost the same at 7 d. It should be
noted that for U0, U20, and U25, the flexural strengths at 91 d slightly decreased when
compared to that at 28 d. This may be due to the variation of testing.

A significant increase in strength was observed with the increase of silica fume
replacement from 0 to 20%. However, when silica fume exceeded 20%, the strengths
tended to decrease. The compressive and flexural strengths of U0 at 28 d were 89.8 and
19.1 MPa, respectively. When 10%, 15%, 20%, and 25% silica fume replacement were
used, the compressive strength increased by approximately 18%, 16%, 28%, and 25%,
respectively, as shown in Figure 4.2(a). The flexural strength increased by approximately
11%, 15%, 29%, and 18%, respectively. The addition of 15% to 20% silica fume
decreased the porosity and improved the strength due to its filling effect in addition to the
pozzolanic reaction [108]. However, a higher content of 25% silica fume increased

plastic viscosity and yield stress, which could result in air entrapment [108]. Furthermore,
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high silica fume content could significantly increase the risk of micro-cracking due to

autogenous shrinkage, which can affect the mechanical properties [109,110].
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Figure 4.2. Effect of silica fume content on compressive and flexural strengths of UHPC
matrix

4.4. TG/DTG ANALYSES

The TG and DTG results of UHPC matrix with different silica fume contents at
28 d are shown in Figure 4.3. It is obvious that all the samples showed mass losses in the
temperature ranges of 30-200, 370-470, and 600-730 °C. Mass loss between 30 and 200
°C can be attributed to the loss of combined water initially from C-S-H (80-90 °C) and
then from ettringite (~130 °C) [111]. Mass loss in the range of 370-470 °C is due to the
decomposition of CH [112]. From Figure 4.3(a), it can be found that UHPC matrix
containing 15%-25% silica fume showed a larger mass loss in the range of 30-200°C, but
a smaller mass loss from 370 to 470 °C, when compared to UO.

Additionally, the peak intensity of C-S-H was sharper than that of UO, as seen

from Figure 4.3(b). These results indicated that pozzolanic reaction increased with the
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increase of silica fume content. As the temperature increased from 600 to 730°C, the
mass loss decreased further. This can be associated with the decomposition of calcium
carbonate resulting from the carbonation of hydration products with CO2 from air during

sample preparation [113].
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Figure 4.3. TG and DTG curves of matrix with different silica fume contents at 28 d

Figure 4.4 shows the effect of curing time on TG and DTG curves of UHPC
matrices with 15% and 20% silica fume. With the increase of curing time, the mass loss
between 30 and 200°C increased, as can be seen from Figure 4.4(b) and (d). Moreover,
an obvious C-S-H peak at 80-90°C with high intensity first appeared at 7 d. This
suggested that hydration products of C-S-H and/or ettringite phase in the U15 and U20
mixtures increased with curing time.

Besides, the mass loss in the range of 370-470°C decreased with curing age,

which indicated reduced CH content. A relatively weak endothermic peak of CH for the
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samples at 91 d was observed. Therefore, it is reasonable that CH was gradually
consumed by pozzolanic reaction with silica fume to from C-S-H, which dominats the

performance of UHPC matrix [114].
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Figure 4.4. TG and DTG curves of U15 and U20 samples at different curing ages

The CH content of UHPC matrix at different ages is plotted in Figure 4.5. It can

be seen that the CH content decreased with both the incorporation of silica fume and
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prolongation of age. The reference batch U0 had a constant CH content of around 6%
regardless of the age. However, it reduced gradually with the increase of silica fume
content. U15, U20, and U25 had obvious lower CH contents compared with UQ. It can be
also seen from Figure 4.5 that no significant difference was observed for the samples at 1
and 3 d. However, the CH content of U15, U20, and U25 at 28 d was about 3% only,
which was about 50% lower than that at 1 d. At 91 d, the CH contents of U15, U20, and
U25 were reduced further to 2.3%. This indicated that silica fume could efficiently react
with CH to form C-S-H due to the pozzolanic reaction, and thus improved the strengths

of UHPC matrix.
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Figure 4.5. Content of CH in UHPC matrix from TG analysis

4.5. PORE STRUCTURE CHARACTERISTICS

Figures 4.6 and 4.7 shows the effect of silica fume content on pore structure of
UHPC matrix at 1 and 28 d, respectively, which cover the pore size range from around 5
to 200 pum. It can be seen from Figure 4.6(a) and (b) that UHPC matrix incorporating

silica fume at 1 d had slightly lower porosity and peak value at dv/dlog (d) curves
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compared to UO. It is suggested that the most probable pore diameters, corresponding to

the peak value in dv/dlog(d) curves, are strongly correlated with the permeability and ion

diffusivity in cement-based materials [115]. When the curing age was prolonged to 28 d

(Figure 4.7), it became apparent that a very low porosity of 6%-8% was observed for

UHPC matrix with 15%-25% silica fume. This corresponds to a reduction of 67% in

comparison to those of U0 and U10 mixtures.
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Figure 4.6. Pore structure of UHPC matrix with different silica fume contentsat 1 d

It can also be noted that the U25 had a higher porosity than that of U20. This is

consistent with the reduced flowability and strength. Besides, the most probable pore

diameters decreased gradually with the increase of silica fume content, with the dv/dlog

(d) curves shifted left to reflect pore refinement. Therefore, the incorporation of 15%-

25% silica fume significantly densified the microstructure of UHPC matrix due to the

combined filling and pozzolanic effect [116].
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Figure 4.7. Pore structure of UHPC matrix with different silica fume contents at 28 d

Figure 4.8 shows the effects of the curing age on pore structure of the U20. As
can be seen from Figure 4.8(a), the porosity at 1 d was 17.5%. However, at curing ages of
3, 7, and 28 d, the porosities were reduced to 11%, 9%, and 6%, respectively. At 91 d, the
porosity was similar to that at 28 d. This is consistent with that strengths of UHPC matrix
increased with curing time. The most probable pore diameters decreased from 20 to 7 nm,
as shown in Figure 4.8(b), which corresponds to the pore refinement with the increase of
curing age.

The measured pores can be divided into five size ranges, including gel micro-
pores with appeared diameter < 10 nm, meso-pores of 10-50 nm, middle capillary pores
of 50-100 nm, large capillary pores of 100 nm-5 pm and macro-pore >5 um
[117,118].The change in pore size distribution of UHPC matrix with silica fume content
and curing age are shown in Figure 4.9. As can be seen from Figure 4.9(a), the volume
fraction of gel pores increased with the incorporation of silica fume although the

difference was limited. It changed significantly with silica fume content at 28 d, as shown
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in Figure 4.9(b). Compared with the UO, the proportion of gel micro-pores of the samples

with silica fume increased from 0.02% to 25%, while the meso-pores reduced from 55%
to 6%. It was reported that the nano-pores with diameter finer than 10 nm corresponds
typically to gel pores in C-S-H with water held by hydrogen bond [119]. These pores
mainly affect shrinkage and creep of the hardened cement-based materials. It can be also
noted from Figure 4.9(b) that the total capillary pores (meso-pores, middle, and large
capillary pores) of UHPC matrix with silica fume decreased considerably. Capillary pores
larger than 50 nm can have great influence on mechanical properties and permeability of
cement-based materials [117]. This is in good agreement with the results concerning

significantly enhancement in the mechanical behavior of UHPC matrix made with silica

fume.
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Figure 4.8. Pore structure of U20 mixture at different ages
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Figure 4.9. Pore volume distribution of UHPC matrix

The volume of macro-pores also increased. Such macro-pores include entrapped
(1-3 mm) and entrained air bubbles (50-200 um), which are often exhibited as discrete,
individual bubbles with spherical shape in concrete [118]. The increased volume of
macro-pores may be due to air entrapment associated with reduced workability of UHPC
matrix with increased silica fume content [117]. The evolution of pore structure of the
U20 mixture with increased curing age can be seen from Figure 4.9(c). It is interesting to

note that the volume fraction of gel micro-pores of samples at 1 d was 4.7%. However,
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such volume of gel micro-pores increased from 4.7% to 26%, while the total capillary

pores decreased from 72% to 30% when curing age was prolonged from 1 to 91 d. In
addition, the volume of meso-pores and middle capillary pores were reduced to very

small portions.

4.6. DISCUSSION

The results above show that the flowability, compressive and flexural strengths,
and microstructure in UHPC matrix with different silica fume contents are closely related
to each other. Because of highly fine particle size and high SiO2 content of silica fume,
the incorporation of silica fume can reduce the porosity, refine the pores, and increase the
C-S-H content. The lower the porosity is, the higher the cement packing density in the
bulk matrix and I1TZ is [118]. Therefore, a greater content of the high strength cement
hydration products, such as C-S-H, are necessary to ensure high compressive and flexural
strengths.

Additionally, silica fume could significantly increase the autogenous shrinkage,
especially in the UHPC matrix with low w/b and high cementitious materials content
[120]. Generally, the higher the amount of silica fume is, the larger the autogenous
shrinkage is. The autogenous shrinkage is controlled mainly by the size of the pores
smaller than 10 nm [121]. It is obvious that the volume fraction of those pores increased
with the increase of silica fume content, as described in Section 4.5. However, when the
silica fume content exceeds a certain value, workability was reduced and the greater
viscosity led to some entrapment of air bubbles [108]. This can reduce the quality of the

matrix and interface, and thus reduce compressive and flexural strengths.
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4.7. SUMMARY

This paper investigated the effect of silica fume content on heat of hydration and
compressive and flexural strengths of UHPC matrix made with constant SP content. TG
analysis and MIP were used to characterize hydration products and pore structure of the
matrix. Based on the results of this study, the following conclusions can be drawn:

(1) Due to the accelerated hydration of cement by silica fume, the compressive
and flexural strengths of UHPC matrix containing 15%-25% silica fume were enhanced
by 10-25 MPa after 28 d standard curing when compared to that of the reference sample.

(2) The CH content and porosity of samples with 15%-25% silica fume were only
3% and 5%-8% after 28 d of standard curing, respectively. However, when 25% silica
fume was replaced, strengths began to decrease due to reduced flowability and slightly

increased porosity.
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5. FIBER PULLOUT, TENSILE, AND FLEXURAL PROPERTIES OF UHPC
MADE WITH DIFFERENT SILICA FUME CONTENTS

5.1. BACKGROUND

Due to its very fine particle size and high surface area, silica fume acts as a
stabilizing agent by reducing the mobility of water. The spherical silica fume particles
provide “ball-bearing” effect when energy is applied to the fresh concrete, causing the
mixture to flow easily in a well-dispersed system. Meanwhile, silica fume can consume
Ca(OH) to form C-S-H gel, which benefits the mechanical properties of concrete.
Previous research has indicated that the typical silica fume content in UHPC is
approximately 25% to 30%, by mass of cementitious materials [122-125]. The silica
fume content in a typical mixture proportion of commercial UHPC product that known as
Ductal®, the most often used one in North America for both research and applications, is
25% [122]. Wille et al. [123] prepared UHPC with 28-d compressive strength over 200
MPa through cementitious matrix optimization without application of heat or pressure
curing. In a study of the durability of UHPC, Teichmann and Schmidt used a UHPC
mixture with 24% silica fume [124]. The researchers at the U.S. Army Corps reported a
UHPC mixture proportion with silica fume of 28% [125]. Depending on the silica fume
content as well as other mixture design characteristics, silica fume produce a double-
edged sword effect on the performance and cost-effectiveness of UHPC. Low silica fume
content can reduce concrete plastic viscosity with little or no change in yield stress and
limited improvement in the microstructure and performance of UHPC [126]. High

substitution can ensure sufficient pozzolanic reaction, but it also leads to high cost with a
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plenty of silica fume working as inert and great increase in both the yield stress and

plastic viscosity.

The interfacial bond properties of the fiber-matrix interface in UHPC have been
extensively investigated using pullout testing [127-129]. The studied factors include
matrix composition, fiber shape, fiber inclination angle, fiber embedment length, curing
condition, and use of micro-fibers [55,98]. Generally, the pullout testing can be classified
into single-sided and double-sided testing in terms of the methods of applying tensile
force and/or fiber embedment [130]. The single-sided testing is relatively simple to be
carried out. However, difficulty in gripping the free end of the fiber is inevitably
encountered due to its very fine diameter [131]. To secure the reliability of the results, a
large number of samples are required. Furthermore, the whole fiber is fully embedded in
real composites, which is significantly different from that in the ideal test. The double-
sided pullout testing was described by Chan et al [33]. Dog-bone samples with two
separated halves from the sample center perpendicular to loading direction were used. In
order to completely eliminate the adhesion of the two halves, one-half sample was cast
first, then the other half 24 h later. However, this makes the casting process complicated
and time-consuming. Therefore, to ensure proper interfacial stress transfer from the fiber
to the matrix, so as to better evaluate the interfacial bond properties of fiber-matrix in
UHPC, a simple and suitable method is needed.

In order to make highly flowable UHPC with satisfactory mechanical properties,
the superplasticizer content was adjusted with considering adequate rheological
properties. The main objective of this research is to evaluate the effect of silica fume

content on fiber-bond behavior, flexural and tensile properties of non-fibrous UHPC
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matrix and UHPC with 2% steel fibers at 28 d. The silica fume was determined at 0, 5%,

10%, 15%, 20%, and 25%, by mass of cementitious materials. The slump flow of the
UHPC mixtures was fixed at 280 £ 5 mm through changing the SP content. The flexural-
to-tensile strength ratios of UHPC matrix and UHPC were determined and the tensile
strength was predicted based on the fiber-matrix bond strength and material
characteristics according to the composite theory. The tests performed aimed at covering
the essential aspects of UHPC, in particular, workability and mechanical performance of

the material with adequate silica fume content.

5.2. FIBER PULLOUT BEHAVIOR

Fiber pullout load-slip relationship of non-fibrous UHPC matrix with different
silica fume contents is depicted in Figure 5.1. The bond of the interface between a steel
fiber and the matrix is dominated by chemical adhesive bond, friction, and mechanical
anchorage associated with the roughness of steel fiber. The fiber-matrix bond strength
that calculated based on the peak value is illustrated in Figure 5.1(b). As the silica fume
content was increased from 0 to 15%, the bond strength gradually increased and then kept
a stable value at 20%. The bond strength of the U15-0 mixture was 4.77 MPa, which was
5.5 times greater than of the reference mixture. As the silica fume content increased
further to 25%, the bond strength decreased to 1.88 MPa, which was even lower than that
of the mixture with 5% silica fume. Therefore, adding adequate silica fume was
beneficial to the fiber-matrix interfacial bond properties. However, adverse effect would
occur with the greater content of silica fume. This agrees well with the previous results

reported by the authors [132], in which the SP dosage was fixed at 2%. The difference
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was that the decrease in fiber bond strength of UHPC mixture made with 25% silica fume

in this research was much lower, which might due to various mixture composition,

flowability, etc.

\ —=u— Fixed mini-slump flow of 280 mm

| //}\;\
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Pullout load (N)

Fiber-matrix bond strength (MPa)
EN

5 10 15 20 25
Pullout slip (mm) Silica fume content (%)

(a) Pullout load-slip behavior (b) Fiber-matrix bond strength

Figure 5.1. Fiber pullout behavior in non-fibrous UHPC matrix with different silica fume
contents

5.3. FLEXURAL PROPERTIES OF UHPC MATRIX AND UHPC

The four-point flexural load-displacement relationship of UHPC matrix with
different silica fume contents is shown in Figure 5.2. The UHPC matrix exhibited brittle
failure after reaching the ultimate load at a displacement of approximately 0.05 mm. The
flexural strength of the reference mixture was 4.7 MPa. The incorporation of 5%-25%
silica fume enhanced the flexural strength by 10%-60%. The highest flexural strength of
7.5 MPa was achieved in UHPC matrix made with 15% silica fume. However, a higher
silica fume content over 15% started to decrease the flexural strength by 26% when

compared to the SFO mixture.
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Figure 5.2. Flexural behavior of UHPC matrix with different silica fume contents

With the incorporation of steel fiber, ductile failure mode was observed because
the steel fibers can bridge the cracking to further sustain load. Figure 5.3 illustrates the
flexural load-displacement relationship of UHPC made with 2% steel fibers at different
silica fume contents. All the five mixtures showed a linear load-displacement section
within a displacement of 0.05 mm and then followed by a non-linear section to the peak
load and finally a descending part with further loading. Obviously, the reference mixture
SFO0-2 showed an apparent smooth section in the descending curve. UHPC mixtures made
with silica fume exhibited continuous zig-zag patterns, indicating enhancement in
toughness because of improved bond properties at fiber-matrix interface correlated with
silica fume.

The effect of silica fume content on flexural strength of UHPC made with 2%
steel fibers is illustrated in Figure 5.4. The addition of 2% of steel fibers rendered the
flexural strength of UHPC up to 13 — 17.8 MPa, which was approximately 170% greater

than those of UHPC matrix without any fiber. The flexural strengths of UHPC with 5% to
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20% silica fume were approximately 13-18 MPa, which were 7%-37% greater than that

of the reference mixture. UHPC mixture made with 10% of silica fumed achieved the
greatest flexural strength. Similarly to fiber-matrix bond properties and flexural strength
of the UHPC matrix, too much addition of silica fume started to decrease the flexural
strength of UHPC. Therefore, higher content of silica fume resulted not only decreased

flexural strength but also high cost of UHPC.
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Figure 5.3. Flexural load-displacement relationship of UHPC made with 2% steel fibers
at different silica fume contents
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Figure 5.4. Flexural strength of UHPC made with 2% steel fibers at different silica fume
contents
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5.4. TENSILE PROPERTIES OF UHPC MATRIX AND UHPC

The tensile properties of UHPC matrix and/or UHPC with different silica fume

contents are illustrated in Figures 5.5 and 5.6.

16000

14000 -
12000 -
10000 ’
8000
6000

Tensile load (N)

4000 |
2000

Extention (mm)

Figure 5.5. Tensile load-extension relationship of UHPC made with 2% steel fibers at
different silica fume contents
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Figure 5.6. Tensile strengths of UHPC matrix and UHPC with different silica fume
contents

With the increase of silica fume content, the tensile strength increased initially
and then decreased when reaching a critical value of 10% and or 15%. The incorporation

of 5%-20% silica fume enhanced the tensile strengths by 33%-70% when compared to
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the reference mixture. Even though the tensile strength of UHPC made with 25% silica

fume was still greater than that without any silica fume, but there is no need to add more
silica fume from the cost-effective and strength aspects. This agrees well with the
previous fiber-matrix bond, compressive, and flexural behavior results.Silica fume can
densify and homogenize the microstructure of UHPC due to filling effect and highly
pozzolanic reaction with calcium hydroxide to form C-S-H gel [132]. The increase in C-
S-H gel and improvement in microstructure can significantly increase the fiber-matrix
bond strength. Excessive silica fume up to 20% would increase the plastic viscosity and
introduce air voids but has little effect on decreasing the calcium hydroxide content
[126,132]. Moreover, the increase of plastic viscosity could increase the resistance for
vertical orientation of fiber to the loading direction of samples, thus reducing the
mechanical properties of UHPC. Therefore, 10%-20% silica fume is sufficient for desired

mechanical properties and high cost-efficiency.

5.5. FLEXURAL AND TENSILE STRENGTHS RELATIONSHIP

Through calculation, the flexural-to-tensile strength ratios of UHPC matrix and
UHPC are plotted in Figure 5.7. The flexural-to-tensile strength ratio of UHPC matrix
without fiber was in the range from 1.3 to 2.3. The addition of 2% steel fibers enhanced
the corresponding value, which was 1.9 to 2.8. This agrees well with the flexural-to-
tensile strength ratio of ordinary fiber-reinforced concrete, which is reported as varying
between 1 and 3, depending on the geometry of reinforcement and specimens, and

reinforcement volume [133].
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Figure 5.7. Flexural-to-tensile strength ratios of UHPC matrix and UHPC

5.6. PREDICTION OF TENSILE STRENGTH BASED ON FIBER-MATRIX
BOND STRENGTH

In terms of the fiber-matrix bond and the tensile strengths of the non-fibrous
UHPC matrix, the tensile strength of UHPC with certain fiber volume can be obtained.
According to the composite theory, the tensile strength of fiber reinforced cement-based
composites is the addition of tensile strengths of matrix and reinforcement. This can be
determined according to the following equation (5.1):

O =Om(1-Vi) + 04V (5.1)

where otc (MPa) is the tensile strength of fiber reinforced concrete composite; om (MPa)
is the tensile strength of concrete matrix; Vi (unit-less) is the fiber content, by volume of
concrete; ot (MPa) is the average tensile strength of fiber.

The efficiency of steel fiber to sustain tensile stress is closely correlated with fiber
length and fiber orientation. Therefore, coefficients of fiber length (1) and orientation

(n0) are considered in the calculation of tensile strength of fiber-reinforced concrete.
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The tensile strength of UHPC with 2% steel fibers can be calculated in terms of

Equation (5.2).
G = Oy (L=V) +NMyo V4 (5.2)

where, om (MPa) is the tensile strength of UHPC matrix; #e (unit-less) is the coefficient
related to orientation of fiber in three dimensions, which was determined as 0.5; ot (MPa)
is the tensile strength of steel fiber; #i (unit-less) is the length factor, which is closely
related to the critical length and damage state of steel fiber.

According to previous research [134, 135], the critical length of fiber can be
calculated from Equations. (5.3) and (5.4). If fiber pullout-length is greater than the
critical length, pullout failure mode would be observed and Equation (5.3) will be used.

Otherwise, Equation (5.4) will be used in the case of rupture failure of fiber.

n = when |, <™ (5.3)

f
ctit
21¢
crit

n, :1—# when 1, > (5.4)

f

The relationship between the tensile strength of fiber (o) and fiber critical length

(1™ for failure is presented in Equation (5.5).

crit
o 2
i =

dy

T (5.5)

Therefore, the following equation can be finally derived to calculate the tensile

strength of the composite material:

|
Gy ZGtm(l—Vf)Jrﬂed—fTVf (5-6)

f
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The predicted and experimental tensile strengths of UHPC made with 2% of steel

fibers are plotted in Figure 5.8. The data is dispersed around the equality line with a

relative coefficient of 0.64.
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Figure 5.8. Predicted and experimental tensile strengths of UHPC with 2% steel fibers

5.7. SUMMARY

This study investigated the influence of silica fume content, varying from 5% to
25% with a basis of 5%, on pullout bond properties of embedded fibers and mechanical
properties of UHPC matrix and UHPC made with 2% steel fibers at a fixed mini-slump
flow of 280 mm. The involved mechanical properties include flexural and tensile
strengths. The flexural-to-tensile strength ratio of both UHPC matrix and UHPC were
established. The tensile strength of UHPC was predicted using the composite theory with
consideration of the performance of UHPC matrix and material characteristics. Based on

the results of this study, the following conclusions can be drawn:
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(1) The incorporation of 5%-25% improved the fiber-matrix bond and mechanical
properties of both UHPC matrix and UHPC made with 2% steel fibers. The optimal silica
fume content for UHPC matrix and UHPC with 2% steel fibers were 10%-20%.
Compared to the reference mixture, the fiber-matrix bond strength, flexural strength, and
tensile strength of UHPC were enhanced by 440-540%, 7%-37%, and 33%-70%,
respectively. With silica fume content further increased up to 25%, the corresponding
values were significantly decreased.

(2) The flexural-to-tensile strength ratio of UHPC matrix without fiber was in the
range from 1.3 to 2.3, it increased to 1.9 to 2.8 with the addition of 2% steel fibers.

(3) The tensile strength of UHPC made with 2% steel fibers can be efficiently
predicted using the composite theory with considering the properties of UHPC matrix,
consumed fiber orientation coefficient of 0.5, and fiber characteristics, including fiber
geometry, volume, and diameter. The values were dispersed around the equality line with

a relative coefficient of 0.64.
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6. MULTI-SCALE INVESTIGATION OF MICROSTRUCTURE, FIBER BOND,
AND MECHANICAL PROPERTIES OF UHPC WITH NANO-CaCO3

6.1. BACKGROUND

Nanotechnology has attracted much interest over the past decade. Since the
introduction of nanomaterials, extensive research has been conducted to promote their
use in cement-based materials. It is well known that nanomaterials can provide
significant enhancement in performance of cement-based material given their physical
effect (filling and nucleation effect) as well as the chemical reactivity [136]. Nano-silica
(nano-SiOz2) [137], nano-alumina (nano-Al203) [138], nano-titanium oxide (nano-TiOz)
[139], nano-CaCOs [140], nano iron (Fe203), and nanotubes [141] have been studied for
use in cement-based materials. Among those, nano-SiOz and nano-CaCOs are commonly
used. This is because nano-CaCOs is relatively cheap due to abundant supplying of
CaCOs in limestone, chalk, and marble, while nano-SiO2 can present superior

performance given its high specific area and pozzolanic activity [142]. Prototypes of

limestone and silica fume have been employed in cement-based materials for many

years [106143].

Limestone powder can be considered as a non-costly replacing material for
cement because of its richness in natural resources, which is an ideal alternative material
to replace cement [144, 145]. Although it was first considered as filler, some studies
indicated that it shows accelerating effect from chemical reaction with tricalcium
aluminate (CsA) to form carboaluminate compound, especially when the limestone
powder is finely ground. Although limestone powder does not show pozzolanic effect to

consume calcium hydroxide [146,147], its interaction with tricalcium silicate (CsS) can
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accelerate the hydration of CsS [147,148]. Nano/micro limestone has been incorporated

in cement-based materials to investigate its effect on microstructure, heat of hydration,
autogenous shrinkage, and mechanical properties of concrete [142,149]. The optimal
nano-CaCOs (NC) content can vary with mixture composition, water-to-cementitious
ratio, and flowability of mixture. Li et al. [149] studied the effect of NC on mechanical
properties of UHPC matrix at a water-to-binder ratio of 0.16 and 0.17. They found that
the incorporation of 3% NC, by mass of cement, improved compressive strength by about
11%-17% under 2 d of heat curing and then 26 d of standard curing compared to the
control mixture. Wu et al. [146] reported that NC had limited effect on strength
development of UHPC matrix from 3 to 7 d but significant influence from 7 to 28 d under
standard curing. Xu et al. [150] indicated that the addition of 1%-2% NC could improve
the compressive strength of the high-performance concrete by 13%-18% under standard
curing temperature. Camiletti et al. [142] suggested that replacement of 2.5%-5% NC to
cement showed about 32%-75% improvement in the 24 h compressive strength of UHPC
matrix with respect to that of the control mixture. However, aforementioned studies focus
mainly on the mechanical properties of matrix and/or UHPC. There is a perceived lack of
information on the effect of NC on the microstructure, fiber-matrix bond properties, and
mechanical properties of UHPC. Fiber, as an essential component of UHPC, plays a vital
role in enhancing the strength and toughness of the composite material through the fiber-
matrix interface. Therefore, optimizing the microstructure, fiber-matrix bond properties,
and eventually the mechanical properties of UHPC is of great significance.

This paper presented a multi-scale investigation that focuses on evaluating the

effect of nano-CaCOs on fiber-matrix bond properties, microstructure of UHPC matrix
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(without fiber), as well as mechanical properties of UHPC reinforced with 2% steel
fibers. It aims at providing new insights into enhancing mechanical properties of UHPC
through optimization of fiber-matrix bond properties and microstructure, which finally

targets at multi-scale enhancement of performance for UHPC.

6.2. EFFECT OF NANO-CaCOs3 ON INTERFACIAL FIBER-MATRIX BOND
AND MECHANICAL PROPERTIES OF UHPC MATRIX

Effect of nano-CaCOs on fiber pullout-slip curve and compressive strength of
UHPC matrix made without any steel fibers were illustrated in the following part.

6.2.1. Fiber Pullout-Slip Curves. Figure 6.1 shows the effect of nano-CaCOs
content on pullout load-slip curves of the UHPC matrix at 1, 3, 7, and 28 d. All curves
showed increased pullout load with the increase in slip. The pullout load then remained
almost unchanged for a certain slip after reaching the peak value. Afterward, the pullout
load decreased until the fibers were completely pulled out from the matrix.

The embedded fibers in the UHPC matrix with nano-CaCOs experienced
debonding at a greater pullout load capacity, especially at later ages, compared to the
reference mixture without any nano-CaCOs (NCO0). The peak loads for NCO was 15, 17,
30,and 32 N at 1, 3, 7, and 28 d, respectively. It increased to 21, 30, 46, and 62 N,
respectively, when 3.2% nano-CaCOs was added. Moreover, the area surrounded by the
pullout load-slip curves of UHPC matrix with nano-CaCOs became significantly bigger,
especially after 7 d, thus indicating a significant improvement in toughness.

6.2.2. Experimental and Predicted Bond Strengths. Figure 6.2 illustrates the

effect of nano-CaCOs content on fiber-matrix bond strength and compressive strength of
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the UHPC matrix. As observed from Figure 6.2(a), the incorporation of nano-CaCOs

remarkably enhanced the bond strength. The bond strength of embedded fibers in the
reference specimen (NCO) at 28 d was 3.3 MPa and increased to 5 MPa with the increase
of nano-CaCOs content. However, the bond strength decreased when the nano-CaCOs

exceeded a critical value of 3.2% or 4.8%.
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Figure 6.1. Fiber pullout load-slip curves of UHPC matrix with different nano-CaCOs
contents
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The bond strength of the embedded fibers in NC6.4 at 28 d was about 4 MPa.

Therefore, the optimal dosage of nano-CaCQOs in terms of the bond strength was in the
range from 1.6% to 4.8%. Nano-CaCOs can improve the microstructure and increase the
content of C-S-H because of its nucleation effect. Furthermore, it can chemically react
with C3A and increases the roughness of fibers due to precipitation of reaction product
onto the fiber surface [151]. This could improve the frictional bond and eventually the
fiber-matrix bond strength. However, high nano-CaCOs content can lead to increase in
viscosity, drop in flowability, and uninform dispersion, which can introduce cracks and

pores, especially at the fiber-matrix interface. This will be discussed in Section 6.3.
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Figure 6.2. Effect of nano-CaCOs on fiber-matrix bond strength and compressive strength
of UHPC matrix

As can be also seen from Figure 6.2(a), the bond strength increased considerably
between the age of 1 and 7 d, but was almost stable after 28 d. For example, the bond

strength of NC3.2 at 1 d was approximately 2 MPa, and increased to approximately 3.8
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MPa at 7 d. At 91 d, the bond strength was 5.2 MPa, which was only 8% greater than that

at 28 d. The change in bond strength was closely related to the compressive strength of
the matrix.

As shown in Figure 6.2(b), the compressive strength of the UHPC matrix
increased by approximately 175% from 1 to 7 d, but only by 28% from 7 to 91 d. The
incorporation of 1.6%-4.8% nano-CaCOs increased the compressive strength by 3-15
MPa, which was 8%-18% greater than the reference specimen, depending on curing age.
This is comparable to the results reported by Li et al. [149] that UHPC with 3% NC
exhibited an increase in compressive strength of 11%-17% after 2 d of heat curing and
then 26 d of standard curing compared to the control mixture. The incorporation of nano-
CaCOscan obviously increase the heat of hydration due to high surface energy. Moreover,
it enhances the packing density of the matrix and acts as nucleation seeds for the
precipitation of C-S-H, thus improving the early-age mechanical properties of the UHPC
matrix [146]. However, the enhancement in compressive strength associated with nano-
CaCOsis relatively low, which might be due to standard curing and very dense structure
of UHPC.

The response surface methodology was employed to estimate the bond strength at
the fiber-matrix interface of UHPC matrix as a function of nano-CaCOs content and
curing time. This can enable the interpretation of the significant effect of various
parameters on expected outputs. A second order model was established to predict bond

strength, which is expressed as follows [152]:

Y =bo+ibixi+ibixf+22buxixj (6.1)
i=1 i=1

i<j
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where Y is the predicted response; Xiis the quantitative variables (i=1, 2, 3,...); bo, b,
and bij are the least square estimates of regression coefficients.

Table 6.1 summarizes the estimates for bond strength. Performing the Student t-
test with a significant level of 0.05, the model should allow those terms with a “Prob>|t|”

value less than 0.05, which is considered to be statistically significant.

Table 6.1. Parameter estimates for fiber-matrix bond strength through statistical analysis

Term Estimate  Std Error ~ tRatio  Prob>|t|
Intercept 2.87 0.244147 11.74 <.0001*
Nano-CaCOs content 10.22 4813085  2.12 0.0472*
Age 0.07 0.007838  8.67 <.0001*
(Nano-CaCOs - 0.032)*(Nano-CaCOs - 0.032) -1027.81 254.2355  -4.04 0.0007*
(Age - 25.96)*(Age - 25.96) -0.001024 0.000172  -5.97 <.0001*
(Age-25.96)*(Nano-CaCOs content-0.032) 0.22 0.142663  1.52 0.1450

Note: * denotes statistically significant term

The term (Age - 25.96) * (Nano-CaCOs content - 0.032) was eliminated from the
bond strength evaluation since it was greater than 0.05. The predicted bond strength (zmax)
can be then expressed as follows:

tmax =1.16 + 0.118 X1 - 0.001 X12 + 75.996 X2-1027.81 X2? (6.2)
where tmax (MPa) is the predicted bond strength; X1 (d) is the curing age; X2 (unit-less) is
the nano-CaCOs content.

The contour diagram and actual by predicted plot for bond strength are shown in
Figure 6.3. As observed from Figure 6.3(a), good bond strength over 3 MPa was obtained

for specimens with nano-CaCOs content in the range from 3.2% to 5% after
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approximately 28 d standard curing. The actual bond strength was closely scattered

around the line of equality with a correlation coefficient (R?) of 0.86, as can be seen from
Figure 6.3(b). This suggests that the predicted bond strength from this model fitted well

with the experimental bond strength.
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Figure 6.3. Predicted fiber-matrix bond strength with variation of nano-CaCOs content
and curing age

6.2.3. Experimental and Predicted Pullout Energies. The effect of nano-
CaCOs content on pullout energy between the embedded fibers and the UHPC
matrix is depicted in Figure 6.4. The pullout energy is defined as the energy dissipation
during pullout process through integrating the area under load-slip curves. Change in
pullout energy with nano-CaCOs content and curing age was similar to that of bond
strength. However, the enhancement of pullout energy was much more significant than
that of bond strength, especially after 7 d. The pullout energy of the embedded fibers in
the NC3.2 matrix with 3.2% nano-CaCOs at 3 d was 55 N-mm and increased to 160, 250,

and 248 N-mm at 7, 28, and 91 d, respectively. This is consistent with the results reported
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by Chan et al. [33]. The main reason for this improvement was due to the fact that nano-

CaCOs can lead to interfacial toughening effect associated with the dense structure and/or

improved hydration products, which will be discussed in Section 6.3 [153].
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Figure 6.4. Effect of nano-CaCOs content on fiber-matrix pullout energy

Based on the parameter estimates as shown in Table 6.2, a statistical model that
can be used to predict pullout energy is as follows:
P =25.82 + 4.227 X1 - 0.038X12 + 4179.177 X2 - 63499.89 X2? + 15.916 X1 X2 (6.3)
where P (N-mm) is the predicted pullout energy; X1 (d) is the curing age; Xz (unit-less) is

the nano-CaCOs content, by mass of cementitious materials.

Table 6.2. Parameter estimates for pullout energy through statistical analysis

Term Estimate  Std Error t Ratio  Prob>|t|
Intercept 103.30 12.54393 8.23 <.0001*
Nano-CaCOs content 529.00 247.2628 2.14 0.0456*
Age 2.76 0.402582 6.86 <.0001*

(Nano-CaCOs - 0.032)*(Nano-  -63499.89 13060.95  -4.86  0.0001*
CaCOs - 0.032)

(Age - 26)*(Age - 26) -0.04 0.008789  -433  0.0004*
(Nano-CaCOs - 0.032)*(Age - 26) 1592  7.295189  2.18  0.0419*

Note: * denotes statistically significant term
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Figure 6.5 shows the contour diagram and actual by predicted plot for pullout
energy. From Figure 6.5(a), it can be seen that specimens with nano-CaCQOzs content from
2% to 5% after 20 d had satisfied pullout energy. Its pullout energy after 20 d was higher
than 200 N-mm. The actual pullout energy fitted well with the predicted values from this
model with a correlation coefficient of 0.84, as shown in Figure 6.5(b). However, it
should be noted that change in mixture design and other factors, such as embedded fiber

length, curing regime, fiber shape, can affect the fiber-matrix bond properties.
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Figure 6.5. Predicted pullout energy with variation of nano-CaCOs content and curing
age

6.3. EFFECT OF NANO-CaCO3; ON MICROSTRUCTURE OF UHPC
MATRIX

The porosity and pore size distribution of different UHPC matrix made with
different nano-CaCQOs contents were investigated by using MIP analysis.

6.3.1. MIP Results. Figure 6.6 shows the porosity and pore size distribution of
UHPC containing different nano-CaCOs contents at 28 d. It can be seen from Figure

6.6(a), within a specified dosage of 3.2%, the total porosity decreased with the increase of
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nano-CaCOs content. With further increase in dosage, the porosity began to increase.
When the nano-CaCOs content increased from 0 to 3.2%, the porosity decreased from

15.2% to 12.5%.
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Figure 6.6. Effect of nano-CaCOs content on porosity and pore size distribution of UHPC
matrix at 28 d

However, with the nano-CaCOs content increased further from 3.2% to 6.4%, the
porosity increased from 12.5% to 17.5%. Although nano-CaCOs can efficiently fill
internal pores of the hydrated cement paste, high content of such nanoparticles can lead
to agglomeration and reduction in flowability and increase in viscosity. For the pore size
distribution shown in Figure 6.6(b), the dv/dlog (d) curves of the five UHPC matrix were
superposed covering pore size from 40 to 100,000 nm. For pore size smaller than 40 nm,
the curves for UHPC matrix containing nano-CaCOs shifted to left indicating finer pores
when compared to the NCO reference sample without any nano-CaCOs. Furthermore, the
peak value, i.e. inflection point on the dv/dlog (d) curve, corresponding to critical pore

size decreased. This peak value corresponds to capillary pores, which has great influence
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on the permeability of concrete [154]. It also reflects the connectivity of the pores and
tortuosity of penetration path in concrete. The results indicated that the addition of
appropriate nano-CaCOs content efficiently reduce the porosity, refine the pores, and thus
making UHPC matrix denser and more homogeneous.

Figure 6.7 shows the effect of age on porosity and pore size distribution of UHPC

matrix containing different nano-CaCQs contents.
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Figure 6.7. Effect of age on porosity and pore size distribution of NC series

It can be observed from Figure 6.7(a) that the total porosity decreased with age
due to continued hydration. The NC3.2 at 28 d had a slightly larger total porosity than
those at 3 and 7 d. This may be due to the increased volume of pores larger than 5 um, as
presented in Figure 6.7(b). It can be also observed that the peak value on dv/dlog (d)
curve reduced gradually with age. The value was 0.08 ml/g with a diameter of 30 nm at 1

d. At 7 d, it reduced to 0.06 ml/g. With age prolonged to 28 d, it reduced further and
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shifted to finer pores with diameter of 10 nm only. This corresponds with the results of

considerable increase in strength.
Figure 6.8 shows the pore volume distribution of UHPC matrix, which includes
gel micro-pores (< 10 nm), meso-pores (10-50 nm), middle capillary pores (50-100 nm),

large capillary pores (100-5000 nm), and macro-pores (>5000 nm) [118].
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Figure 6.8. Effect of nano-CaCQOs content and curing age on pore volume distribution of
UHPC matrix

As shown in Figure 6.8(a), the reference sample (NCO) at 28 d exhibited micro-
pores, meso-pores, middle and large capillary pores volume of 23.6%, 10.8%, 1.1%, and
5.1%, respectively. The incorporation of nano-CaCOs particles resulted in refinement of
the microstructure with increased volume of meso-pores (10-50 nm) up to 60%. The

volume of meso-pores was limited to 2%, whereas almost no 50-100 nm pores were

observed.
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From Figure 6.8(b), it can be seen that the volume of pores less than 10 nm
increased with age, while the large capillary pores in the range of 100-5000 nm
decreased. Therefore, the use of 3.2% nano-CaCOs led to a densification of the
microstructure and enhancement of the homogeneity of the UHPC matrix.

6.3.2. TG/DTG Analysis. Figure 6.9 shows the TG and DTG curves of UHPC
matrix with different nano-CaCOs contents at 28 d. The hydration products in the
hardened concrete are C-S-H with endothemal peak at approximately 80 - 90 °C,
ettringite with endothemal peak around 130°C, calcium hydroxide (CH) with an
endothemal peak in the range of 450 - 550 °C, and calcium carbonate with endothemal
peak in the range of 600 - 700 °C. The endothermal peaks at the four temperature ranges
are due to the dehydration of C-S-H and ettringite, decomposition of CH and CaCQOs,
respectively.

It can be seen from Figure 6.9(b), at the first temperature range of 50 - 150 °C,
not only the endothermal peak intensity but also the covered range increased with the
increase of nano-CaCOs content. At 450 - 550 °C, there was no obvious change for the
samples with and without nano-CaCOs. As the temperature increased to 600 - 700 °C, the
decomposition of CaCOs increased with the increase of nano-CaCOs content, which
suggested a larger amount of nano-CaCOs acted as filler in UHPC matrix. It should be
noted the curve change for UHPC matrix with a high dosage of nano-CaCOs (4.8% to
6.4%) was smoother than with low dosage of nano-CaCOs. This might be attributed to

the sufficient and/or well-crystallized CaCOs from incorporated nano-CaCOs particles.
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Figure 6.9. TG and DTG curves of UHPC matrix with different nano-CaCQOz contents at
28 d

Figure 6.10 shows the TG and DTG curves of the NC3.2 at 1, 3, 7, and 28 d. No
significant difference between the DTG curves for UHPC matrix can be found at 1, 3,
and 7 d. All mixtures exhibited a strong AFt peak at 130 °C without obvious C-S-H peak.
However, when the age reached 28 d, significant peak with a strong intensity
corresponding to C-S-H appeared. Moreover, the intensity of the endothermal peak of
CaCOs decreased. This suggests increased C-S-H content and decreased CaCOs content
as curing age prolonged to 28 d. It indicated that in the presence of CaCOs, mono-
carbonate and/or hemi-carbonate could be formed through reacting with CsA. Limestone
could also interact with the AFm and AFt phases. Weerdt et al. [163] stated that when
limestone was incorporated, a peak of mono-carbonate (MC) or hemi-carbonate (HC)
would appear at around 175 °C. This agrees well with that significant strength increase
from 7 to 28 d. The formation of C-S-H may be first due to the pozzolanic reaction

between silica fume and CH. The incorporation of nano-CaCOs could combine with C-S-
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H to form a new compound with space network structure, optimizing the internal

structure and consequently improving the mechanical properties of cement-based

materials.
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Figure 6.10. TG and DTG curves of NS3.2 at different ages

6.3.3. CH Content. The determination of the CH content in concrete samples is
an effective method to follow the degree of hydration as a function of time. Figure 6.11
compares the relative amounts of CH formed in the NC with age. It can be seen that the
CH content in NC series decreased with age. The CH content in UHPC matrix at 1, 3, and
7 d was hardly changed, however, it decreased significantly from 7 to 28 d.

In NC series, the 20% silica fume can help to consume CH to form C-S-H
(Equation 6.4). Nano-CaCOs mainly reacts with CsA to form carboaluminates, as shown
in Equations (6.5) and (6.6). Several researchers have demonstrated that limestone does

not show pozzolanic properties to produce C-S-H gel [163]. This corresponds to the
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limited change of CH content in UHPC matrix samples made with different nano-CaCQOs3
contents. However, the incorporation of nano-CaCOs can change the C-S-H structure,
such as the Ca/Si ratio, and thus affecting mechanical properties of UHPC matrix sample
[155].
xSiO2 + yH20 + zCa(OH)2 — C-S-H (6.4)
CaCOs + 11H20 + 3Ca0-Al203 — 3Ca0-Al203-CaC0O3-11H20 (6.5)
0.5CaC03+11.5H20+3Ca0-Al203+0.5Ca(OH)2 —~

3.5Ca0-Al203-0.5CaC0s-12H20 (6.6)
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Figure 6.11. Amount of CH formed in UHPC matrix with different nano-CaCQOs contents
with age

6.3.4. BSEM Image Analysis. The BSEM observation of an embedded fiber in
the UHPC matrix is shown in Figure 6.12. Porous microstructure around the fiber in
NC3.2 at 7 d was observed, which might be due to bleeding and/or wall effect [156].
Cement paste was adhered on the fiber surface, as observed from the right figure of

Figure 6.12(a). Such porous zone can decrease the contact area between the matrix and
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fiber and eventually the bond strength. At 28 d, fiber-matrix interface was well-bonded in

NC3.2. Some disconnected pores with sizes in the range from 2 to 20 um were observed
from the right image of Figure 6.12(b).

From the right image of Figure 6.12(c), an obvious crack was observed within a
thickness of 4 to 5 um bulk paste adhering to the fiber in NC6.4. This was distinct from
the results in the reference samples (NC0) made without any nano-CaCQs, in which
cracking occurred very close to the steel fiber surface. It is reported that two types of
bond failure occur during the fiber pullout from the matrix, which are adhesive and
cohesive failures [100]. The cohesive failure is a failure occurred in the bulk layer of the
adhesive and is usually the desired failure mode. The adhesive failure occurs at the
interface between the adhesive and the adhered materials.

In Figure 6.12(d), adhesive failure was observed in NCO with obvious cracking
space between the actual fiber and the matrix interface. It should be noted that the
deformation of steel fiber in Figure 6.12 (d) might be because of slightly fiber inclination
from cutting. In Figure 6.12(c), NC6.4 indicated the cohesive failure mode, in which
cracking occurred within the matrix with some cement pastes adhered to the steel fiber.
This suggests higher strength of hydration products associated with the incorporation of
nano-CaCOs to render greater bond strength. However, excessive nano-CaCOs can result
in increase in viscosity and agglomeration issue, leading to more pores and lower bond
strength.

6.3.5. Optical Microscopy Analysis. Figure 6.13 shows optical microscopy
images of NC6.4 at 28 d. Pores with diameter of 50-200 um, aggregate, cement paste, as

well as agglomeration of nano-CaCOs can be identified in the matrix.
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Figure 6.13. Optical microscopy observation of UHPC matrix made with 6.4% nano-
CaCOs

In Figure 6.13(a), serious agglomeration with the irregular area around aggregates
was observed. This introduced apparent pores and cracks between the matrix and
aggregate to increase the porosity. As can be seen from Figure 6.13(b), agglomeration

occurred near the embedded fiber with the obvious porous zone at the interface. This can
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lead to a great reduction in fiber-matrix bond strength and eventually mechanical
properties of UHPC.

6.3.6. Micro-Hardness Characteristics. Table 6.3 shows the micro-hardness of
UHPC matrix with different distances to fiber edge. The micro-hardness of steel fiber
was in the range of 760 to 800 HV. With the increase of distance to fiber edge, the micro-
hardness increased. The micro-hardness was lowest within distances of 40 to 80 um from
fiber edge, which was in the range of 60 to 100 HV, depending on matrix composition.
However, the micro-hardness remained almost constant when distance reached 160 pm.
The lower micro-hardness within distance of 40 to 80 um was due to greater porosity
associated with bleeding/wall effect, as was observed from BSEM images.

It can also be noted that the micro-hardness changed obviously with prolongation
of age and mixture proportion. The micro-hardness of NC3.2 beyond 160 pm to fiber
edge was 89.9 HV at 1 d. It increased gradually to 103.9 and 143.9 HV, respectively, at 7
and 28 d. This corresponds well with the change in matrix strength and fiber bond
strength. Besides, compared to NCO and NC6.4 at 28 d, NC3.2 exhibited obvious higher
micro-hardness. The micro-hardness of NC6.4 at 28 d was comparable to the reference
sample NCO, but was slightly lower than that of NC3.2. The bond between straight fiber
and matrix was mainly dominated by adhesion or chemical bond, which is governed by
the main hydration product C-S-H with a diameter of 10 nm [182]. Nano-CaCOs can
react with CsA to form carboaluminates, but also act as nucleus to change the C-S-H

structure, such as Ca/Si ratio, and thus affecting the bond properties [153].
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Table 6.3. Variation of micro-harness in UHPC matrix with and without nano-CaCOs at
different ages

Micro-hardness (HV)

Distance
NC3.2-1d NC3.2-7d NC3.2-28d NC6.4-28d NCO0-28d

Fiber 797.5 774.6 778.6 763.3 791.0

40 um 63.2 76.6 96.6 73.5 79.3

80 um 79.5 72.6 102.6 15.7 84.4

120 pm 86.6 93.8 103.8 90.4 95.2

160 pm 92.3 1014 1314 101.7 110.8
200 um 89.9 103.9 143.9 102.5 105.4
240 pm 91.0 106.3 143.3 96.5 113.5

6.4. EFFECT OF NANO-CaCO3; ON MECHANICAL PROPERTIES OF
UHPC

Effect of nano-CaCOs content on compressive and flexural strengths of UHPC
made with 2% of steel fibers were evaluated.

6.4.1. Compressive Strength. Figure 6.14 compares the effect of nano-CaCOs
content on 28 d compressive strength of UHPC reinforced with 2% steel fibers. The 28-d
compressive strength of the UHPC reference specimen (NC0-2) was 142.2 MPa. It
increased by 2% and 10% when 1.6% and 3.2% nano-CaCOz were incorporated,
respectively. The improvement in compressive strength correlated with nano-CaCOs was
limited because UHPC is extremely dense with a large amount of fine particles acting as
filler and high rigidity associated with steel fibers.

With greater nano-CaCOs content, the compressive strength showed a decreased
tendency. The compressive strengths of NC4.8-2 and NC6.4-2 specimens were 138.3 and
125.1 MPa, respectively, which were decreased by 3% and 12% in comparison with the

reference samples. Therefore, UHPC with 3.2% NC obtained the highest compressive
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strength, which is in good agreement with fiber-matrix bond properties and MIP results.

Camilette et al. [142] indicated that UHPC samples replaced with 5% NC, by mass of
cement, obtained the highest compressive strength. However, the compressive strength
decreased when the NC content increased to 10%. The optimal NC content by the mass
of cement in this study corresponded to 4%, which was very close to the content in Ref.
[142]. Although similar flowability was kept for the five UHPC mixtures, the viscosity
increased with the increase in nano-CaCOs content. This can introduce pores and cracks

and increase the porosity of samples so as to decrease the compressive strength [146].

170

—=—28d

160 T
= [ dk
3 “IN
S 1501 }
g [ ==
% 140F T \}l
2} L 1
o 130F LS
z
| ?
2 120F -
£ L
S 110}

100

NCO0-2 NC1.6-2 NC3.2-2 N(C4.8-2 NC6.4-2
Mixture ID

Figure 6.14. Compressive strength of UHPC with different nano-CaCOs contents

6.4.2. Flexural Behavior. The influence of nano-CaCOs content on the flexural
behavior of UHPC is illustrated in Figure 6.15. Initially, the five UHPC mixtures showed
a similar linear branch after applying the flexural load. Afterward, they displayed

different peak load values. NC3.2-2 exhibited the highest peak load of 20,974 N,
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followed by that of NC1.6-2 and then NCO-2. The incorporation of 4.8% and 6.4% nano-

CaCOsled to a decrease in peak load, which were 14,639 and 15,198 N, respectively.
Beyond the peak load, the curves showed continuous zig-zag patterns, indicating
enhanced toughness associated with the fibers. The decrease in load within a pattern was
due to pullout of fibers in the specified section. With these fibers gradually being pulled
out, the load was transferred to the fibers at the upper section along the cracking
propagation path and then increased to a certain stage. A high deflection of 10 mm was

reached to get a low constant load, which suggests good ductility.

24000 56
NC3.2-2 1 =-28d
i / 1
20000 F / j
[1g_Neie2 Lo /] Y o
.‘r' NC0-2 ‘.»-"“ ﬂl/" ;,,l M £ a8
16000 - (4 -{/‘| il ol T P Vot =
|8 6.4-2 20004 LT A =
Z Pl " s i i | % I
S 12000 i AgTia i 4id); 5 40F &
=} I z |
3 I = | ' .
8000 || 3 o
| 2 3| 1
4000 H' f .
\ L —
0 ¥ - - R 24 L L ! | L
0 2 4 6 8 10 NCO0-2 NCI.6-2 NC3.2-2 NC4.8-2 NC6.4-2
Deflection (mm) Mixture ID
(a) Flexural load-deflection curves (b) Flexural strength

Figure 6.15. Flexural load-deflection curves of UHPC with different nano-CaCOs
contents

From Figure 6.15(b), it can be seen that the flexural strength increased with nano-
CaCOs content first but then decreased when the dosage exceeded 3.2%. The flexural
strength of UHPC without nano-CaCOs at 28 d was 40.6 MPa and increased by 23%
when 3.2% nano-CaCOs was used. The improvement in flexural behavior was much

greater than the compressive strength. However, when the high nano-CaCQOs content was
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used, the flexural strength decreased to 33.0 MPa, which was 19% lower than that of the

reference specimen. This was consistent with the fiber bond properties and compressive

strength of UHPC.

6.5. DISCUSSION

The results presented in this study indicated that the fiber-pullout behavior,
compressive strength of matrix (without fiber), and mechanical properties of UHPC
increased initially with the increase of nano-CaCOs content. However, when the nano-
CaCOs content exceeds a certain value (3.2%), all the aforementioned parameters showed
a decreased tendency. Some mixtures even exhibited a lower strength than that of the
reference specimen. The incorporation of nano-CaCOs can reduce the porosity and refine
the pores due to physical effect through acting as filler and providing nucleation sites. As
demonstrated by MIP results, the pore volume with an apparent diameter less than 50 nm
was increased from 33% to 70%, while those pores larger than 5 um decreased from 60%
to 30% with the addition of nano-CaCOs. Nano-CaCOs can be absorbed onto C-S-H
and/or fiber to increase the content and optimize the microstructure of C-S-H, and
enhance frictional bond to render greater fiber-matrix bond strength. As observed from
BSEM images, cohesive failure occurred in the samples with nano-CaCOs, while
adhesive failure presented in the reference sample. Meanwhile, nano-CaCQOs can react
with CsA to form hemi- and/or mono-carboaluminate and also stabilize ettringite, thus
leading to an increased volume of hydrates and eventually greater strength [163].

However, when the nano-CaCOs content exceeds a certain value (3.2%), the

agglomeration of nano-CaCQOs, increased viscosity, and reduced flowability of the
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mixture can result in more cracks and air voids near the embedded fibers and aggregates.
Such cracks and air voids are triggers for the failure of concrete, which can lead to a
reduction in fiber-matrix bond properties and eventually decrease in mechanical
properties of UHPC. Therefore, appropriate nano-CaCQOs content should be used to

secure dense microstructure and desired strength and toughness of UHPC.

6.6. SUMMARY

This paper presented a multi-investigation on the effect of different nano-CaCOs3
contents on microstructure, fiber pullout behavior, and mechanical properties of UHPC
reinforced with 2% steel fibers at curing age from 1 to 91 d. The nano-CaCOs contents
varied from 0 to 6.4%, by the mass of cementitious materials. Based on the results from
this study, the following conclusions can be drawn:

(1) The incorporation of suitable nano-CaCOs could significantly enhance the
interfacial bond properties between embedded fibers and UHPC matrix. The interfacial
bond strength and pullout energy increased first with the increase of nano-CaCOs content,
then decreased when a critical value of 3.2% was exceeded. The bond strength and
pullout energy were improved by 45% and 200%, respectively, in comparison with the
reference specimen at 28 d standard curing.

(2) The bond strength was significantly improved from 1 to 7 d, but was almost
mature after 28 d of standard curing. The bond strength and pullout energy can be
efficiently predicted given the curing time and nano-CaCOs content using the response

surface methodology.
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(3) The compressive and flexural strengths of UHPC made with 2% steel fibers
increased with the incorporation nano-CaCOs particles, but decreased when excessive
nano-CaCOs was used. UHPC with 3.2% nano-CaCOs particles reached the highest
compressive and flexural strengths, which were 10% and 23%, respectively, greater than
those of the reference specimen under 28 d standard curing. This suggests nano-CaCOz3
was efficient in enhancing the efficiency of fiber-matrix stress transfer.

(4) Appropriate nano-CaCOs content decreased porosity and transformed
adhesive failure into cohesive failure, as verified by MIP and BSEM observation.
Besides, nano-CaCQOsz can react with CsA to form hemi- and/or mono-carboaluminate and
also stabilize ettringite, thus leading to an increased volume of hydrates and eventually
greater strength. However, excessive nano-CaCOs content increased the porosity of

matrix and introduced weak interface due to agglomeration issues.
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7. UNDERSTANDING MECHANISM UNDERLYING STRENGTH
ENHANCEMENT OF UHPC MODIFIED WITH NANO-SIiO;

7.1. BACKGROUND

As an intrinsically heterogeneous material, the structure of cement-based
materials can be generally discretized into four multi-scale phases: nano, micro, meso,
and macro [36]. The macro-properties of cement-based materials are dominated by the
structure at the nano-scale level. The main hydration product, C-S-H, occupies at least
60%-70% by volume of the hardened cement paste. It is a nano-scale material with
average diameter around 10 nm [157]. It is suggested that C-S-H has low, high, and ultra-
high density forms with different hardness and elastic modulus values and volume
fractions [158]. High-density C-S-H degrades much slower than low-density C-S-H
under external environmental condition [158]. Furthermore, water loss from pores in the
C-S-H gel can lead to considerable autogenous shrinkage, which can cause cracking and
loss of strength and durability of UHPC matrix [159]. Therefore, it is vital to optimize the
microstructure of cement-based materials from the nano-scale to ensure high
performance.

The incorporation of nano-particles exhibited the following effect to densify the
microstructure and improve the properties of cement-based materials. Firstly, the filler
effect - filling pores due to very fine particle size to enhance packing density of the
system [160]. Secondly, the seeding or nucleation effect - providing nucleation sites for
the formation of C-S-H seeds. Additional chemical effect- forming certain new
substances to increase the volume of hydration products. Rong et al. [160] found that

nano-SiO2 accelerated the hardening and enhanced mechanical properties of UHPC when
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3% nano-SiOz, by mass of cementations materials, was incorporated. Ghafari et al. [161]
reported that nano-SiO2 reduced the workability of UHPC and increased compressive
strength, especially at an early age. Although nano-SiO2 could improve mechanical
properties, their hydration mechanisms, hardening processes, and age dependencies are
different depending on mixture proportion, use of SP type and dosage [162]. This could
lead to different hydration products and thereby change in mechanical properties
[147,163,164]. Based on literature review, no information focuses on the contribution of
nano-SiO2 on the interfacial bond properties between fibers and UHPC.

In order to understand the mechanisms behind strength enhancement of UHPC
made with nano-SiOz, the compressive strength of UHPC matrix, fiber-matrix bond, and
mechanicl properties of UHPC with five different nano-SiO2 contents were investigated.
Pore structure and air void of the samples were investigated by mercury intrusion
porosimetry (MIP) and 3D micro-tomography, respectively. Backscatter scanning
electron microscopy (BSEM) and micro-hardness measurement were employed to
evaluate the microstructural features associated with the matrix and/or interface. The
study seeks to understand the mechanism underlying strength enhancement of UHPC

improved with nano-SiOa.

7.2. EFFECT OF NANO-SiO2 ON FIBER-MATRIX BOND PROPERTIES
OF UHPC MATRIX

Figure 7.1 shows the effect of nano-SiO2 content on pullout load-slip curves of
embedded fibers in UHPC matrix at 3 and 91 d. Generally, the pullout behavior can be

divided into four distinct regions, including well bonded region (OP), partially debonded
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region (PQ), fully debonded region (QR), and fiber pullout/slip region (RS), as illustrated

in Figure 7.2 [165,166].
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Figure 7.1. Pullout load-slip curves of embedded fibers in UHPC matrix with different

nano-SiOz contents

At the well-bonded region, the pullout load increases linearly with slip at low slip

values. The resistance in this stage is provided by adhesion or chemical bond with

surrounding UHPC matrix [167]. When the peak load was achieved, the load began to

decrease. However, the mixtures with nano-SiO2 did not show suddenly and dramatically

drop of the load with the increasing of slip from approximately 1 to 3 mm. This can be

due to high frictional coefficient and fiber surface pressure associated with higher matrix

packing density from the surrounding mortar [59, 168]. In this range, fibers were

gradually debonded and pulled out from the UHPC matrix with the occurrence of micro-

cracking at the ITZ. Once the fibers were fully debonded from the matrix (point R in

Figure 7.2), the pullout behavior is mainly governed by friction stress, which is a
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combined action of abrasion and compaction of cement and sand particles surrounding
the fibers [168]. The friction shear stress decreased with the increase of slip due to the

crumbling of cement matrix and a decrease of the roughness of the failure surface [168].

t O-P: Well bonded region
P-Q: Partially debonded
Q-R: Fully debonded
R-S: Fiber pullout region

Load (N)
l®)

S

o Slip (mm) —

Figure 7.2. Typical pullout load versus slip relationship [182]

Figure 7.3 illustrates the effect of nano-SiO2 content on bond strength of fiber-
matrix interface and compressive strength of UHPC matrix. As can be seen from Figure
7.3(a), the bond strength increased with the increase of nano-SiO2 content from 0 to
approximately 1%, but then decreased at a higher content. For the NS2.0 matrix, the bond
strengths were reduced to comparable values as that of the NS0.5 matrix. Therefore, the
optimal nano-SiO2 content for bond strength can be considered to be 1%. The mini-slump
flow of UHPC matrix incorporated with 1% nano-SiO2 was 190 mm. This value dropped
to 150 mm at 2% nano-SiO2. Agglomeration issues associated with excessive nano-SiOz
dosage can lead to some weak zones in the internal structure of concrete [169].

As can be also seen from Figure 7.3(a), bond strength increased considerably at

an early age up to 7 d, and increased slightly afterward until the age of 91 d. The bond
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strength of the NS1.0 mixture at 1 d was approximately 2 MPa, it increased to 3.5 MPa at

7 d and to approximately 4 MPa at 91 d. Chan and Chu [33] investigated the fiber-matrix

bond strength of reactive powder concrete at a W/CM ratio of 0.21 to 0.23 under 3-d

high-temperature curing. The bond strength for nine fibers with an embedded fiber length

of 10 mm was 5.5 MPa. Greater bond strength in that research was because of the change

in C-S-H structure associated with higher temperature curing [170,171]. The bond

strength in this research agrees well with the change in the compressive strength of the

UHPC matrix, as illustrated in Figure 7.3(b). Generally, the higher the compressive

strength of the matrix is, the greater the bond strength would be [55]. Nano-SiO2 particles

can increase the heat of hydration due to filler effect and pozzolanic activity [146], and

thus densifying the microstructure and improve early-age mechanical properties [160].
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Figure 7.3. Effect of nano-SiO2 content on bond strength of fiber-matrix interface and

compressive strength of UHPC matrix
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7.3. MECHANICAL PROPERTIES OF UHPC WITH 2% STEEL FIBERS

The effect of different and contents of nano-SiOz content on mechanical
properties of UHPC made with 2% steel fibers is illustrated in Figure 7.4. The
compressive and flexural strengths of UHPC were improved with the increase of nano-
SiO2 contents up to 1.0 %. The incorporation of 1% nano-SiO2 was shown to improve the
compressive and flexural strengths by 6% and 12%, respectively. The improvement in
flexural strength was greater than that of the compressive strength because of
optimization of the fiber-matrix interaction. However, the compressive and flexural
strengths of UHPC made with the further content of nano-SiO2 were reduced. At a higher
content of nano-particles (NS2.0 mixture), the compressive and flexural strengths were

even lower than those of the reference specimens.
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Figure 7.4. Effect of nano-SiO2 content on compressive and flexural strengths of UHPC

Similar observation was reported by Ghafri et al. [172], who investigated the

effect of nano-SiO2 addition (0, 1%, 2%, 3%, and 4%) on strength of UHPC. The authors
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found that the highest compressive strength was obtained at 3% nano-SiOz2, by mass of

cement. The optimal content of nano-particles depends on several factors, including
W/CM, mixture proportion, type and content of superplasticizer, and nano-particle type

and size.

7.4. EFFECT OF NANO-SiO; ON MICROSTRUCTURE OF UHPC

MIP, 3D tomography, BSEM observation, and micro-hardness were used to
characterize the microstructure of UHPC matrix.

7.4.1. MIP Results. Figure 7.5 illustrates the effect of nano-SiO2 and curing age
on total porosity of UHPC matrix. As can be seen from Figure 7.5(a), the porosity of
matrix at 1 d decreased with the nano-SiO2 content increasing to 1% but then increased
when more nano-SiO2was used. This is in good agreement with the bond properties. Due

to filling and nucleation effects of nano-SiOz2, the pore structure of UHPC matrix can be

refined.
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Figure 7.5. Effect of nano-SiO2 content and curing age on total porosity of UHPC matrix
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However, increased viscosity and agglomeration issues associated with more
addition of nano-SiO2 could introduce air bubbles, thus leading to increased porosity 6%,
This is consistent with the findings reported by others [160]. The optimal nano-SiO2
content can depend on many factors, such as W/CM, mixture proportion, chemical
admixture, and nano-particle type [173]. Therefore, the optimal nano-SiOz2 content in this
research was 1% by mass of cementitious materials.

Curing age exerted a limited effect on the porosity of NS1.0, as illustrated in
Figure 7.5(b). The porosity of the NS1.0 matrix at 1 d was 13%, it slightly decreased to
12.5% at 7 and 28 d. Because of high surface energy originated from fine nano-SiO2
particles, chemical effect can be rapidly released at very early age. The addition of 1%
nano-SiO2 could decrease the porosity by 29% and 19% compared to the reference
sample at 1 and 28 d, respectively. Rong et al. [160] reported that the porosity of ultra-
high performance cementitious composites with 3% nano-SiO2 at 28 d was reduced by
25%.

Figure 7.6 shows the pore volume distribution of UHPC matrix, which includes
gel micro-pores (< 10 nm), meso-pores (10-50 nm), middle capillary pores (50-100 nm),
large capillary pores (100-5000 nm), and macro-pores (>5000 nm) [118]. As shown in
Figure 7.6(a), there were equivalent pore volumes of 25% for meso-pore, middle
capillary pore, large capillary pore, and macro-pore in the reference mixture (NCO0) at 1 d.
The incorporation of nano-SiOz2 particles resulted in refinement of the microstructure
with increased volume of meso-pores (10-50 nm) by 70%. Besides, the nano-SiO2

particles confined the volume of the 50-5000 nm pores to a limited value of 7% to 13%.
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From Figure 7.6(b), it can be seen that the volume of 10-50 nm pores decreased

with age due to further hydration, while the gel micro-pores with diameter less than 10
nm increased. The volume of meso-pores at 1 d was 65%, it decreased to 10% at 28 d. It
was reported that the gel micro-pores correspond typically to gel pores in the C-S-H with
water held by hydrogen bond [174]. This suggests that nano-SiO2 can make the
microstructure of UHPC denser and render it more homogeneous given the extremely
fine particle size of the nano-SiO2 and formation of C-S-H associated with pozzolanic
effect. Moreover, the volume of 50-5000 nm pore was confined to a very small volume,

which was 3% to 7% only.
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Figure 7.6. Pore volume distribution of UHPC matrix made with different nano-SiO2
contents and at various ages

7.4.2. 3D Micro-Tomography. The distribution of steel fiber, aggregates, and
air voids can be visualized and evaluated using 3D micro-tomography, which can be used

to investigate the microstructure and property relationship. Figure 7.7 presents the typical
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3D images of the NSO sample, respectively, each containing an embedded fiber after
pullout testing. The whole, top, right, and front views of each sample were presented. The
density difference and defect volume of the mixtures were presented by the color
difference. The cementitious matrix of the sample are displayed in grey, and the
aggregates appear in black, while the defect areas are presented in blue, green, and
orange, depending on defect volume. Through image analysis, the void distribution in
samples was non-homogeneous with defects irregularly dispersed. Under loading,
cracking would be initiated at such defects and propagates further along the weak lines

[175].

Jefect volume [mm’|

(@) Whole view (b) Top view

(c) Right view (d) Front view

Figure 7.7. 3D micro-tomography of the reference sample (NSO) with an embedded fiber
at 28 d after fiber pullout testing
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The material volume, void volume, void surface, voids at X, Y, and Z plane, and

calculated void content in typical samples with and without nano-particles are

summarized in Table 7.1.

Table 7.1. Void distribution in UHPC matrix with and without nano-SiO2 observed from
3D micro-tomography

Mixture Material Void Void Void Voidat Voidat Void at
volume volume content surface Xplane Y plane Z plane
(mm?)  (mm®) (%) (mm?)  (mm?)  (mm?)  (mm?)

NSO - 28 d 11115 16.9 15 366.6 60.7 64.5 62.3

NS1.0-28d 767.8 9.9 1.3 246.0 42.8 41.6 42.0
NS2.0-28d 661.3 13.6 2.0 321.1 54.6 56.0 54.0

It can be seen that the incorporation of a suitable content of nano-particles
reduced the volume of weak zones from 1.5% to 1.2%, but excessive nano-particle
content reversely increased the air voids to 2%. Appropriate nano-particles can fill pores
to reduce void proportion and to render more homogeneous internal structure and fiber-
matrix interface [175]. However, too much nano-particles can introduce more defect
zones and weaker interfacial zone due to agglomeration issues, which is more vulnerable
to strength loss under loading. This explains why the compressive and flexural strengths
of UHPC increased first but decreased with the increase of nano-particle content.

7.4.3. BSEM Observation of UHPC Matrix with and without Nano-SiO..
Figure 7.8 shows the SEM observation of UHPC matrix made with and without nano-

particles. In the reference sample (NCO), a non-homogeneous cementitious matrix with
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clusters of unshaped hydration products was observed. The nano-SiO2 provides

nucleation sites for the formation of fiber-like C-S-H, as observed in Figure 7.8(b), which
can tightly bond with C-S-H gel particles. Abundant round nuclei were observed with
particle size in the range from 1 to 6 um, which were gradually grown into larger regular

ones with the prolongation of hydration time.

Fiber-like C-S-H

MS&T 20.0kV 13.0mm x2.00k YAGBSE 20.0um MS&T 20.0kV 13.7mm x2.00k YAGBSE 20.0um

(2) NCO (b) NS1.0

Figure 7.8. BSEM observation of UHPC matrix with and without nano-particles

7.4.4. BSEM Observation of Fiber-Matrix Interface. BSEM images of an
embedded fiber in different UHPC matrices are shown in Figure 7.9. BSEM images can
indicate different grey levels of unhydrated cement and hydration products, which vary
with the atomic numbers. The unhydrated grains appear brighter than hydration products,
and pores appear darker [176,177]. As observed from Figure 7.9, the unhydrated cement
particles in the UHPC matrix decreased with curing time. There were a lot of unhydrated
cement particles in the NS1.0 sample, especially at 1 d. The microstructure around the

embedded fiber within the distance of 50 um from the fiber surface was more porous than
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that in the NS1.0 matrix at 7 d. The porous zone around the fiber at 7 d might due to

bleeding and/or wall effect, which can reduce the contact area with the matrix, and thus

the bond properties [178].
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Figure 7.9. BSEM images of UHPC made with 0 and 1% nano-SiO2 with an embedded
fiber

No obvious ITZ was observed around the fiber in both the NS1.0 and the NSO
matrices at 28 d. However, more porous zone was observed in the NSO sample (Figure

and more homogeneous matrix exhibited in the NS1.0 sample. There

—
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were micro-cracks propagating from the fiber edge into the NSO matrix. This may be

formed during sample preparation. Micro-hardness testing was conducted on the same
sample in the vicinity of fiber (within 240 pm to the edge of the fiber) to validate the
homogeneity of the stiffness of hydration products. These results are discussed in Section
7.4.6.

Surface plots of BSEM images are illustrated in Figure 7.10. These plots reflect
the roughness quality of the polished samples shown in Figure 7.10. The difference in
roughness between fiber and UHPC matrix of approximately 200 pm was observed due

to the very high stiffness of the fiber compared to that of the matrix.

2550~ 2550

(a) NS1.0 at 28 d (d) NSO at 28 d

Figure 7.10. Surface plot of UHPC sample with an embedded fiber

7.4.5. Element Mapping of Fiber-Matrix Interface. Polished samples with
embedded fibers obtained from various UHPC mixtures after the pullout testing were
subjected to chemical element mapping. The results of the element mappings of the

reference mixture NSO are shown in Figure 7.11.
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Figure 7.11. Element mappings of fiber-matrix interface in the reference mixture
NSO
The distribution of various elements, including Fe, Al, Si, Ca, K, O, C, Na, and
Mg, at the fiber-matrix interface, was determined. The primary elements around the steel
fiber were Ca, Si, O, and K in addition to small amounts of Al, Mg, and Na. Through

element identification, the irregular bright particles in the Si image (Figure 7.11) were
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identified as sand, while the circular area in the middle of that image corresponds to steel
fiber. The remaining part of the image was cementitious matrix.

Images of the main elements, including Ca, Si, and Fe, at the fiber-matrix
interface in the NS1.0 mixture are presented in Figure 7.12. Generally, the brighter the
area is, the greater content and purer element would be. The Si image in the NS1.0
mixture was brighter than that in the reference mixture. This indicated that the Si element
in the NS1.0 mixture because of corresponding rich sources from nano-SiO2. These are
good implications of changes in Ca/Si ratio of C-S-H, which can mainly affect the fiber-

matrix bond and mechanical properties of UHPC [179].

Si Kal . Ca Kal Fe Kal
4

™ 250um ! ™ Z50um !

™ Z50um

Figure 7.12. Element mappings of fiber-matrix interface in the NS1.0 mixture

Figures 7.13 and 7.14 present the morphology of fiber-matrix interface and
element atomic distribution along the indicated scanning lines that started from the fiber
surface into the matrix. The main elements along the scanning line are found to be Fe and
O. Within a distance of 50 pum to the left starting point (0 pm), Fe and C were the primary
elements, indicating the steel fiber zone. Beyond this zone, the atomic percentage of Fe

significantly decreased to nearly zero, whereas the O, Ca, and Si elements predominated,
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suggesting a layer of cement paste. During the line scanning, the aggregate was avoided

to prevent interference of the results because of its richness in Si. In the references
mixture (NCO), the atomic percentage of Ca was greater than that of the atomic
percentage of Si, indicating an increased Ca/Si ratio. The atomic percentage of Ca was
found to occupy about 15% to 40% of the total atomic percentage along the scanning

line, while the Si atomic takes up to 10%-20%.
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Figure 7.13. Morphology and element atomic number distribution along the scanning line
in the NSO mixture

In the NS1.0 mixture depicted in Figure 7.11, the atomic percentages of the Si

were greater than that of the Ca, except the area beyond 130 um distance.
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Figure 7.14. Morphology and element atomic number distribution along the scanning line
in the NS1.0 mixture

The atomic percentages of Ca and Si took up to 5%-40% and 10%-50%,
respectively. This suggests the decreased Ca/Si ratio of the hydration products associated
with Si element from nano-SiO2. The decrease in Ca/Si ratio can lead to longer silica
chain length, resulting in improved mechanical properties of the C-S-H, including elastic
modulus and hardness [180]. Pelisser et al. [179] indicated that the elastic modulus and
hardness of synthesized C-S-H increased with the decreased of Ca/Si ratio. The mean
Ca/Si ratio of C-S-H gel in OPC paste was reported to vary from 1.2 to 2.1 and can
decrease with the decrease in W/CM, use of supplementary cementitious materials, and

increase in curing temperature [181].
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7.4.6. Micro-Hardness of Matrix around Fiber. Table 7.2 summarizes the
micro-hardness results of the UHPC matrix that were obtained at different distances from
the fiber edge. The measurements were conducted on the same sample used for BSEM
observation. The micro-hardness of fiber was 770-790 HV. With the increase of distance
from the fiber edge, the micro-hardness value of the matrix increased. For example, in the
NS1.0 sample at 28 d, the micro-hardness of the matrix at 40 um from the surface was
84.1 HV. It increased to 88.6 and 100.5 HV at 80 and 120 um, respectively. The micro-
hardness did not significantly change beyond 120 um. For the NS1.0 samples at 1 and 7
d, the micro-hardness within a distance of 80 um from the fiber edge was obviously
lower than that with far distance. This was attributed to the porous microstructure as
observed in Figure 7.9 (a and b).

The micro-hardness increased with prolongation of hydration time. For the NS1.0
sample at 1, 7, and 28 d, the micro-hardness at 80 um from the fiber edge were 82.9,
85.4, and 96.6 HV, respectively. In addition, the NS1.0 at 28 d showed greater micro-
hardness compared to the reference sample NSO. This indicated that the incorporation of
1% nano-SiO2 can enhance the quality of the matrix. It was suggested that bond between
fibers and matrix was mainly dominated by adhesion or chemical bond, which is
governed by the main hydration product C-S-H with a diameter of 10 nm [182]. In
addition to the pozzolanic reaction of nano-SiOz that resulted in a greater volume of C-S-
H gel, the nano-SiO: acts as nucleus for the precipitation of C-S-H. These mechanisms
can lead to the better bond of the C-S-H, and thus enhancing bond properties with steel

fiber and matrix.
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Table 7.2. Micro-harness of UHPC matrix within 240 um from the fiber edge

No. Micro-hardness (HV)
NS1.0-1d NS1.0-7d NS1.0-28d  NS0-28d

Fiber 785.5 774.6 774.6 791.0

40 um 62.2 66.6 84.1 79.3

80 um 82.9 85.4 96.6 84.4

120 um 85.4 87.9 100.5 95.2

160 pm 91.7 97.5 121.3 110.8
200 um 95.3 98.7 123.5 105.4
240 um 92.0 101.0 117.2 1135

7.5. SUMMARY

This paper presented a multi-scale investigation of the effect of different nano-
SiO2 contents on microstructure, fiber pullout behavior, and mechanical properties of
UHPC reinforced with 2% steel fibers. Four concentrations of nano-SiO2, varying from 0
to 2.0%, were chosen to prepare UHPC. A reference mixture made of 20% silica fume
but without any nano-particle was used. Advanced material characterization techniques,
such as scanning electronic microscopy (SEM), X-ray diffraction, and 3D micro-
tomography, were employed to elucidate the mechanisms underlying the enhancement of
mechanical properties of UHPC made with nano-SiO2. Based on the results presented in
this study, the following conclusions can be drawn:

(1) Nano-SiOz2 can significantly enhance the interfacial bond properties between
fibers and UHPC matrix. The bond strength and pullout energy increased first with the
increase of nano-SiO2 content, but then decreased when a critical value of 1% was

exceeded. Such change was consistent with the compressive strength development of
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matrix. The bond strength and pullout energy of UHPC matrix with 1% nano-SiO: after

28-d standard curing were enhanced by approximately 35% and 70%, respectively, when
compared to the reference sample.

(2) Mechanical properties of UHPC made with different nano-SiO2 contents
increased initially with the increase of nano-SiO2 content, but decreased when exceeding
a critical value of 1%. High content of nano-SiO2 resulted in great loss of compressive
and flexural strengths. The values could be even lower than those of the reference
specimen.

(3) Nano-SiO2 could serve as nuclei for the precipitation of C-S-H, hence leading
to more C-S-H content and alteration of C-S-H structure. The Ca/Si ratio in the reference
sample was greater than 1. The inclusion of Si element from nano-SiO2 decreased the
Ca/Si ratio to a lower value, leading to longer silica chain length and eventually improved
mechanical properties of the C-S-H. The addition of 1% nano-SiOz2 resulted in the lowest
porosity of matrix associated with denser and more homogeneous microstructure. I1TZ
with a thickness of 50 um was observed due to the wall and bleeding effect in correlation

with lower micro-harness compared to the bulk matrix.
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8. HOW DOES FIBER SHAPE AFFECT FIBER PULLOUT BEHAVIOR AND
MECHANICAL PROPERTIES OF UHPC?

8.1. BACKGROUND

Several strategies can be used to improve bond properties at interfacial transition
zone (ITZ) between the matrix and embedded fibers, including: (1) densification of the
cementitious matrix [101,171]; (2) use of deformed fibers [59]; (3) surface treatment of
fibers, such as plasma treatment for polyethylene fibers [100]. The level of the bond
increase resulting from the use of deformed fibers appears to offer the highest degree of
bond improvement [100]. The bond mechanism between embedded fibers and the
surrounding matrix typically includes three parts: (1) adhesion or chemical bond; (2)
friction; and (3) mechanical anchorage and interlock of the fiber [183]. Adhesion is
initially solicited during pullout testing and is closely correlated with the properties of the
ITZ. After full debonding is attained, friction and/or mechanical anchorage between the
fiber and matrix play a dominant role through the slippage of fibers [184]. The use of
deformed fibers can efficiently enhance bond given additional mechanical interlocking
provided by the fiber geometry [40]. Several geometries of deformed fibers exist,
including hooked, corrugated, flattened-end, twisted, and irregular fibers.

Pullout behavior between fiber and matrix depends on several factors, including
fiber type and geometry, loading rate, matrix strength, curing condition, use of
supplementary cementitious materials, embedment length and the inclination angle of the
fibers. Wu et al. [132] indicated that UHPC matrix incorporated with 15%-25% silica
fume after 28 d standard curing resulted in stable bond properties. Wille et al. [101]

reported that the equivalent bond strengths of hooked and twisted fibers were about four
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to five times higher than that of straight fibers embedded in the same UHPC matrix. Abu-

Lebdeh et al. [55] suggested that the peak load and pullout energy of hooked fibers can
be approximately two and a half times greater than those of straight fibers. In that
research, a very-high strength concrete (VHSC) matrix with ratio W/CM of 0.16 was
used. The fiber pullout was determined using a single-side pullout test. Furthermore,
Abu-Lebdeh et al. [55] suggested that both the maximum pullout load and total pullout
energy increased with the increase of compressive strength of the matrix given the dense
microstructure of the high strength concrete. Beglarigale and Yazici [185] investigated
the fiber-matrix pullout behavior in UHPC. Smooth and hooked steel fibers were used at
different embedment lengths. Pullout peak loads of hooked fibers were 390%, 65%, 51%,
and 38% higher than those of straight fibers with embedment lengths of 10, 20, 30, and
40 mm, respectively. In the pullout process, the hooked and corrugated fibers were
subjected to plastic deformation after pullout, leading to a substantial increase in pullout
behavior [186, 187].

Fiber shape greatly affects the mechanical properties, especially tensile and
flexural behavior, of ultra-high performance fiber reinforced concrete (UHPFRC) [40,
188]. Wu et al. [40] reported that fiber shape had little effect on first crack strength but a
considerable effect on peak load of flexural load-displacement relationship. In addition, a
constitutive model was adopted to generate the relationship through normalizing the
flexural load-deflection curve and it agreed well with the experimental results. Park et al.
[71] suggested that UHPFRC produced with twisted fiber demonstrated the best tensile
properties, whereas those with smooth macro-fibers exhibited the worst performance.

Quantitative research has been done by far about the effect of fiber shape on pullout
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behavior of fiber and/or mechanical properties of UHPC. However, there is a perceived
lack of information on the relationship between pullout behavior and mechanical
properties of UHPC. How does fiber shape affect fiber pullout behavior and hence
mechanical properties of mechanical properties of UHPC remains an interesting topic.
This study aims at evaluating the bond properties between different shaped fibers
and UHPC matrix as well as its relationship with microstructure and mechanical
properties of UHPC. The influences of straight, corrugated, and hooked fibers on bond
properties and mechanical properties of UHPC with 2% of these fibers at different ages
were experimentally evaluated. Advanced materials characterization techniques including
mercury intrusion porosimetry (MIP), X-ray diffraction (XRD), and thermal gravimetric
(TG) analyses were employed to characterize the microstructure of the matrix and/or
fiber-matrix interface. The bond strength related to both microstructure and mechanical
properties of UHPC was established. Flexural strengths of UHPC with different fiber
geometries were predicted using pullout bond strength of embedded fiber and the flexural
strength of the UHPC matrix based on composite theory. It is of the purpose to enhance

the bond properties of fiber and eventually the overall mechanical properties of UHPC.

8.2. EFFECT OF STEEL FIBER SHAPE ON INTERFACIAL BOND
PROPERTIES BETWEEN FIBER AND UHPC MATRIX

Effect of straight, hooked, and corrugated fiber on fiber-matrix bond properties
were investigated.

8.2.1. Pullout Load-Slip Relationship. The pullout load-slip curves of UHPC
embedded with different shaped fibers that were determined at 1, 3, 7, 28, and 91 d are

shown in Figure 8.1. The results indicated that samples with hooked fibers had the
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highest pullout peak load and pullout energy or pullout toughness (area under the curve),

whereas those embedded with straight fibers showed the lowest corresponding values.
The pre-peak branches, or the ascending branches, for the three fibers had both a linear
and non-linear parts [165,166]. In the linear part, the fibers were well bonded to the
matrix, which resulted in an elastic behavior. At this region, the hooked fibers had the
steepest slope, followed by that of the corrugated fibers, and then that of the straight
fibers. In the non-linear part of the ascending part of the pullout load-slip curves, it can be
generally found that the slopes of the curves started to decrease with further increase in
pullout load to peak values. The loss of stiffness was related to irrecoverable deformation
at the fiber-matrix interface. In this region, the fiber can be partially debonded from the
matrix [183]. With further increase in the slip, the pullout load gradually decreased to
zero, suggesting fibers were completely pulled out from the pulled half of the dog-bone

shaped specimen.
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Figure 8.1. Pullout load-slip curves of the U15 and U20 matrix embedded with different
fiber geometries
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Figure 8.1. Pullout load-slip curves of the U15 and U20 matrix embedded with different

fiber geometries (cont.)
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Figure 8.1. Pullout load-slip curves of the U15 and U20 matrix embedded with different
fiber geometries (cont.)

As observed in Figure 8.1, peak load increased with curing time. For the hooked
fibers in the U20 matrix at 1 d, the peak load was 150 N and increased to 175, 208, 225,
and 235 N at 3, 7, 28, and 91 d, respectively. A similar trend of increase in peak load with
curing time was found for the U15 matrix. The peak load for the three fibers in the U20
matrix was slightly greater than that in the U15 matrix due to the greater compressive
strength of the matrix. Banthia [189] investigated the fiber-matrix bond of steel fiber
reinforced concrete using a double-sided pullout testing. It was found that the peak load
of straight and hooked fiber (I = 60 mm, d = 0.6 mm) in a matrix (W/CM of 0.35) after 28
d moist curing were 54 and 228 N, respectively. The results were comparable to 50 and
225 N in this study with the matrix at the same age. It should be noted that fiber-matrix
bond varies with the type of fiber, embedded length of fiber, and properties of matrix.

8.2.2. Bond Strength to Embedded Fibers. Figure 8.2 shows the effect of fiber
shape on bond strength for the U15 and U20 matrix at different ages. The two matrices
exhibited similar gains in bond strength with age. They both increased rapidly during the

first 7 d and gradually reached a constant value thereafter. The bond strength between the
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straight fibers and the U15 matrix at 1 d was 2.0 MPa; it increased to 3.0 MPa at 28 d. At

91 d, only a slight increase in bond strength was observed.

The change in the bond strength of the embedded fibers in U20 mixture was
similar to the U15 mixture, except for slightly higher strength. This might be due to
higher packing density at the ITZ associated with the incorporation of 20% silica fume,
which leads to higher compressive strength of the matrix [59]. On the other hand, higher
autogenous shrinkage associated with the greater use of silica fume could take place,
which can lead to clamping pressure and confinement of embedded fibers [190]. Chan
and Chu [33] obtained a bond strength of 4.8-5.5 MPa with reactive powder concrete
after heat curing using the same pullout testing. The lower bond strength obtained in this

research was because of standard curing.
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Figure 8.2. Effect of fiber shape on bond strength between fiber and U15 and U20 matrix

As also illustrated in Figure 8.2, fiber shape had a significant effect on the bond

strength. The bond strengths of corrugated and hooked fiber with U20 matrix at 28 d
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were 7.5 and 19.2 MPa, respectively. They were seven and three times higher than those
with straight fibers. The results were in good agreement with the findings in Ref. [59,
189], in which the bond strength of UHPC with deformed fibers was five times more than
that with straight fibers. Therefore, additional mechanical anchorage from the deformed
fiber significantly improve the bond properties of fiber-matrix interface [183].

8.2.3. Pullout Energy. Pullout energy, or pullout toughness, is defined as the
energy dissipated during fiber pullout process, which can be obtained by integrating the
area under pullout load-slip curve. Figure 8.3 illustrates the effect of the fiber shape on

pullout energy.
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Figure 8.3. Effect of fiber shape on pullout energy between fiber and matrix for the U15
and U20 matrix
The three types of fiber exhibited similar trend for the variation of pullout energy
with age as that of bond strength varied with time. Hooked fibers again achieved the
highest pullout energy, whereas straight fibers showed the lowest value. The pullout

energies of hooked and corrugated fibers were five and three times higher than those of

www.manaraa.com



128

the straight fibers. Therefore, deformed fibers considerably enhanced the toughness of the

composite material. The pullout energy for the U20 mixtures was higher, especially for

those with corrugated and hook-end fibers, than that of the U15 mixtures. This was

consistent with the results of bond strength.

8.3.

MICROSTRUCTURAL EXAMINATION

To investigate the pore structure and porosity of the different mixtures of U15 and

U20, MIP analysis was examined.

8.3.1. MIP Measurement. Figure 8.4 depicts the MIP results of the U15 and

U20 matrix at 1 and 28 d. The change in pore size distribution of the U15 and U20 matrix

showed a similar trend and did not change much. However, the U20 matrix had a slightly

lower porosity of 17.5% and 5.9% at 1 and 28 d, respectively, compared to 17.8% and

7.6% of the U15 matrix. This corresponded well with the previous bond properties to

fiber. Therefore, the U20 matrix with 5% more silica fume resulted in a denser

microstructure and better bond properties.
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Figure 8.4. MIP results of the U15 and U20 matrix at 1 and 28 d
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Figure 8.4. MIP results of the U15 and U20 matrix at 1 and 28 d (cont.)

From Figure 8.4(b), it can be seen that the most probable pore size (critical pore
size), corresponding to the inflection point on dv/dlog (d) curve, of the matrix at 1 d was
50 nm. It was refined to 5 nm at 28 d, as observed in Figure 8.4(d). The most probable
pore size mainly reflects the connectivity and tortuosity of pores in concrete. Generally,
the lower the most probable pore size and corresponded intruded volume, the poorer the
connectivity and tortuosity of the pores. Therefore, the microstructure of UHPC was
gradually refined with curing time.

8.3.2. Optical Microscopy Observation. Figure 8.5 shows the optical
microscopy observation of fiber before and after pullout testing. Significant abrasion on
the surface of pulled out steel fiber (top one in the figure) can be obviously observed
when compared to the original fiber. The coating brass film on the surface of the pulled
out fiber was abraded, with a lot of scratches on the fiber surface and a length of 5 mm
part presented black. From Figure 8.5(b and c), it can be observed that the pullout half of

hooked and corrugated fiber became relatively straight. Although they were not fully
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straightened, their initial shape was lost. Therefore, deformed fiber can provide

effectively mechanical anchorage associated with plastic deformation during pullout

process, and thus enhancing the bond properties between fiber and matrix.

1000 pm

(a) Straight fiber (b) Corrugated fiber (c) Hooked fiber

Figure 8.5. Optical microscopy observation of fiber before and after pullout from matrix

8.3.3. XRD Analysis. Figure 8.6 shows XRD patterns of the U20 mixture that
were tested at age of 1, 7, and 28 d. The crystal phases of UHPC samples are shown to be
composed of quartz (SiO2) from the sand with characteristic peaks at 26 =21.1°, 26.8°,
39.7°, 50.4°, and 60.1°. Small amounts of AFt (at 9.7°), Ca(OH)2 (at 18.1°, 34.0°, and
47.2°), and unhydrated cement clinker, such as CsS and C2S (at 29.4°, 30.1°, 32.2°, 32.8°,
34.5°, and 39.0°) were also observed. The intensity of AFt was low given its limited
content compared to other phases.

As illustrated in Figure 8.6, an obviously new peak at about 28.2° appeared at 7
and 28 d, except 1 d. Nonat [191] obtained C-S-H hydration by mixing fine CsS and
SiO2. It was found that C-S-H showed a strong peak at this point. Wang et al. [192] also
observed a tobermorite peak at this point. This peak might be due to poor-crystalized C-

S-H associated with the hydration of C3S and/or C2S. Besides, the intensity of Ca(OH):
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of U20 at 28 d was very weak compared to those at an early age, indicating effective

pozzolanic reaction between silica fume and Ca(OH)2 with age.
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Figure 8.6. XRD patterns of U20 mixture at different ages

The semi-quantitative analysis of hydration products in the U20 mixture at

different ages is summarized in Table 8.1. With the increase of curing time, the content of

unhydrated cement C3S and/or C2S and CH decreased gradually. A reduction of calcium

silicate (CsS and/or C2S) of 24% was observed between 1 and 7 d, then 8% between 7

and 28 d. This corresponded well with the age-dependency of bond properties. The CH

content at 28 d was 3% only, which decreased by 62% compared to that at 1 d. Therefore,

good pozzolanic reaction between the silica fume and CH favors bond properties between

the fiber and matrix.

Table 8.1. Semi-quantitative analysis of hydration products in the U20 mixture at

different ages

No. Unhydrated CsS and/orCzS (%) | CH (%) | Ettringite (%)
U20-1d |29.7 7.9 5.8
U20-7d |220 7.0 6.0
U20-28d | 20.2 3.0 7.1

www.manaraa.com



132
8.3.4. Calcium Hydroxide Content. Figure 8.7 compares the CH content in the

U15 and U20 mortars at different ages determined by TG analysis. The CH content for
U20 at 1, 7, and 28 d were 5.8%, 4.7%, and 2.2%, respectively, which were slightly

lower than that from XRD analysis. This was because the proportion obtained from XRD

only accounted for crystal composition.
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Figure 8.7. CH content in the U15 and U20 matrix at different ages
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Figure 8.8. Relationship between bond strength of straight fiber and CH content

Besides, the CH content in the U20 matrix was slightly lower than that in the U15

matrix. This validated the previous bond properties and MIP results perfectly. The
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addition of 20% silica fume in the U20 mixture led to further reduction in porosity and
increased C-S-H content, which allowed better bond stress transfer at the fiber-matrix
interface. The relationship between the bond strength of straight fiber and CH content can
be observed from Figure 8.8. The interfacial bond strength decreased exponentially with

the increase in CH content with correlation coefficients up to 0.98.

8.4. EFFECT OF STEEL FIBER SHAPE ON MECHANICAL PROPERTIES
OF UHPC WITH 2% STEEL FIBERS

Based on the above results, the U20 matrix that exhibited better bond to fiber and
denser microstructure was finally chosen to investigate the effect of fiber shape on
mechanical properties of UHPC prepared with 2% steel fiber.

8.4.1. Compressive Strength. Figure 8.9 compares the compressive strength of
UHPC with the incorporation of 2% straight, corrugated, and hooked fibers.

The 28-d compressive strength of the U20 matrix with no fiber was 115.3 MPa,
and increased to 142.2, 151.6, and 153.6 MPa when 2% straight, corrugated, and hooked
fibers were used, respectively. Therefore, the incorporation of 2% steel fiber can increase
the compressive strength by 20 to 40 MPa, depending on the curing time and fiber shape.
The improvement in compressive strength associated with the use of steel fiber is due to
the intrinsic rigidity of the fiber. This was consistent with the results reported in the
literature [22,63]. The magnitude of such increase depends on the fiber dosage, fiber
geometry, and curing time. The highest compressive strength was obtained with the
hooked fiber, followed by the corrugated fiber and finally the straight fiber. However, the
effect of fiber shape on compressive strength of UHPC was limited to a certain value,

which was only 1 to 7 MPa.
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Figure 8.9. Compressive strength development of UHPC made with 2% straight,
corrugated, and hooked steel fibers

8.4.2. Flexural Behavior. The incorporation of 2% steel fiber significantly
improved the flexural behavior, as observed in Figure 8.10. The reference specimen with
no fiber had a sudden drop after reaching the peak load of approximately 10,570 N, as
can be seen from Figure 8.10(a). UHPC specimens with any of the three fiber types
exhibited the same increase in load-deflection until the first cracking load of 14,200 N,
which was 34% greater than that of the non-fibrous UHPC. The similar linear branches
for the three fibers were attributed to the same UHPC matrix. This was due to the first
cracking strength depends mainly on the matrix strength. This was consistent with the
results reported in the literature [40]. After the linear branch, a nonlinear branch of the
load-flection curve was obtained to reach the peak load, carrying capacity of UHPC with
hooked fiber exhibited the highest flexural strength. Beyond peak load, all UHPC
exhibited progressive fiber pullout similar load-deflection behavior. All UHPC specimens
had some residual flexural strength at very high deflection value of 10 mm, indicating

good ductility with 2% steel fiber.
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Figure 8.10. Flexural load-deflection curves of UHPC made with 2% straight, corrugated
and hooked steel fibers

From Figure 8.10 (b), it can be seen that the flexural strength increased with

curing time and incorporation of 2% steel fiber. The flexural strength of UHPC with no

fiber at 28 d was 24.8 MPa and increased to 39.7 MPa with the incorporation of 2%

straight fiber. When 2% corrugated and hooked fibers were used, the flexural strengths

increased to 41.72 and 44.09 MPa, respectively. Therefore, UHPC with hooked fiber

demonstrated the best mechanical properties, followed by corrugated fiber and straight

fiber.

8.4.3. Bond Strength vs. Flexural Strength of UHPC. Figure 8.11 depicts the

relationship between bond strength to embedded fiber and flexural strength of UHPC

made with different fiber geometries. With the increase of bond strength, the flexural

strength of UHPC gradually increased. For the straight fiber, when bond strength

increased from 2 to 3.5 MPa, the flexural strength of UHPC increased from 15 to 40

MPa. On the other hand, different bond strengths were needed to obtain the same flexural

www.manaraa.com



136
strength of UHPC made with different fiber shapes. For instance, when the bond strength

to straight, hooked, and corrugated fibers were 3.3, 8.8, and 16.6 MPa, respectively, a
flexural strength of 40 MPa can be achieved. The flexural strengths of UHPC made with
corrugated and hooked fiber were enhanced by 8% to 28% and 17% to 50%, respectively

when compared to straight fiber.
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Figure 8.11. Bond strength vs. flexural strength of UHPC with 2% steel fibers of different
shapes

8.5. PREDICTION OF FLEXURAL STRENGTH OF UHPC BASED ON
COMPOSITE THEORY

According to the composite theory, the tensile strength of fiber reinforced cement-
based composites can be calculated according to Equation (8.1):
6, =0,,1-V;)+0c,V, (8.1)
where otc (MPa) is the tensile strength of fiber reinforced concrete composite; om (MPa)
is the tensile strength of concrete matrix; Vi (unit-less) is the content of fiber, by volume

of concrete; ot (MPa) is the average tensile strength of fiber.
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A Linear relationship exists between flexural strength (o1c) and tensile strength
(otc) of fiber reinforced cement-based composites, as shown in Equation (8.2).
G = 0O, (8.2)
Based on the composite mechanics theory, the flexural strength of UHPC with 2%
steel fiber can be calculated in terms of Equation (8.3).

6 = oo, 1=V, ) +0,V, |= 00 (1=V,) + oanNSm Vs (8.3)
where a is the flexural-to-tensile strength ratio, which was determined of 2.0 according to
previous research; om (MPa) is the flexural strength of UHPC matrix; e (unit-less) is the
coefficient related to orientation of fiber in three-dimensional space, which was
determined as 0.5 [193]; otmax (MPa) is the maximum tensile strength of steel fiber;
(unit-less) is the length factor, which is closely related to the critical length and damage

state of steel fiber. The critical length can be expressed as follows:
(8.4)

where It is the critical length of steel fiber (mm); d is the fiber diameter (mm); T is the
bond strength between steel fiber and UHPC matrix (MPa).
Based on previous research [194], the corresponding 71 during flexural loading

can be calculated from Equations (8.5) and (8.6), respectively.

crit
n, =1—# when |, > (8.5)

f

I

N, :W When If < I?rit (86)
f
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It was observed from the pullout and flexural behavior testing that the steel fibers
were pulled out from the UHPC matrix. Therefore, the Equation (8.6) can be used to

calculate ni and the flexural strength can be expressed as follows:

|
G =0pnL=Vi)+an, d_foT (8.7)

f
The predicted flexural strength (otc) of the UHPC can be calculated based on bond
strength to fiber (1) and flexural strength of matrix (om), which were determined
experimentally. The predicted vs. experimental values of flexural strengths of UHPC are

summarized in Table 8.2.

Table 8.2. Predicted and experimental values of flexural strength of UHPC

Time (d) Flexural Experimental Predicted otc of Predicted value
strength of oic of UHPC UHPC /experimental value
matrix (MPa) (MPa) (MPa)

S C H S C H S C H

1 11.1 151 179 265 135 16.0 293 089 090 111

3 18.8 23.7 304 358 216 289 386 091 095 1.08

7 18.8 29.6 327 39.9 220 292 40.1 0.74 0.89 1.00

28 24.8 39.7 414 441 284 358 496 071 086 1.12

91 25.4 40.2 437 472 293 368 509 073 084 1.08

Note: S, C, and H denote straight, corrugated, and hooked fibers, respectively.

The ratios of predicted value to experimental value were in the range from 0.8 to
1.1, except three data for the straight fiber. The error was within 15%, indicating that the
predicted flexural strengths agreed well with the experimental values. The larger

difference between predicted and experimental flexural strengths of UHPC with straight
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fiber might be due to high sensitivity to the orientation of fiber. Therefore, fiber shape

had a remarkable strengthening effect on UHPC.

8.6. SUMMARY

This study investigated the influence of straight, corrugated, and hooked steel
fibers on pullout bond properties between embedded fibers and mechanical properties of
UHPC made with 2% steel fibers. Advanced materials characterization techniques
including MIP, TG, and XRD analysis were employed to evaluate the matrix and/or the
interface of the matrix with embedded fibers. The relationship between bond strength and
mechanical properties was established. Based on the results of this study, the following
conclusions can be drawn:

(1) The use of deformed fibers effectively enhanced the interfacial bond
properties between fibers and UHPC matrix, as well as mechanical properties of UHPC.
Pullout bond strength and toughness of embedded hooked fibers were approximately
seven and five times greater, respectively, than those with straight fibers, and three and
three times greater than those of corrugated fibers.

(2) Pullout bond strength did not significantly increase beyond 7 or 28 d,
depending on the fiber type. Good exponential correlation was established between CH
content and pullout bond strength of embedded fibers. The pullout behavior of the UHPC
matrix prepared with 20% silica fume was greater than that with 15% silica fume. This
was confirmed by lower porosity and less CH content in the matrix.

(3) Fiber shape had limited effect on compressive strength of UHPC but

significant influence on flexural strength. Depending on the curing age, the flexural

www.manaraa.com



140
strength of UHPC with 2% corrugated and hooked fibers were 8% to 28% and 17% to

50%, respectively, greater than that with straight fibers.

(4) Flexural strength of UHPC incorporating different shaped fibers can be
predicted using pullout bond strength of embedded fibers and flexural strength of the
non-fibrous UHPC matrix based on the composite theory. The prediction takes into
consideration of fiber volume, fiber length, fiber diameter, coefficient related to the

orientation of fibers in three dimensions. The ratios of predicted to measured value were

between 0.8 and 1.1.
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9. COMPARISON OF STATIC AND IMPACT FLEXURAL PROPERTIES OF
OPTIMIZED UHPC WITH SCMS AND NANOPARTICLES

9.1. BACKGROUND

Ultra-high performance concrete (UHPC) is a new type of composite material that
can develop high compressive strength over 150 MPa, high tensile strength ranging from
5 to 15 MPa given the low water-to-binder ratio use of steel fibers [15, 96]. The fracture
energy of UHPC can vary from 8,560 to 40,000 J/m?, which is approximately 220 times
greater than that of conventional mortar [195]. Because of these excellent mechanical
properties and ductility, UHPC has a great potential application in structural elements
that require high impact resistance, strength, and toughness [196]. Several studies have
demonstrated the superior performance of UHPC under static loading conditions [197-
198]. However, limited information is available on the dynamic behavior of UHPC,
especially on mixture composition. The response of concrete structure subjected to
impact loading differs greatly from that under static loading.

The dynamic mechanical properties of UHPC can be evaluated using the drop-
weight impact and Split-Hopkinson-Pressure-Bar (SHPB) test methods [84, 199]. The
drop weight impact testing is a low velocity testing, which can be conducted through
releasing a drop weight from a known height to impact the specimen. Habel et al. [61]
employed this method to investigate the dynamic bending properties of ultra-high
performance fiber-reinforced concrete (UHPFRC) plate specimens. The dynamic bending
strength of the UHPFRC specimens under dynamic loading were increased by 15%-60%,
depending on the mass of drop weight, when compared to those under quasi-static

loading. Rong et al. [85] found that the dynamic compression behavior of ultra-high
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performance cement-based composites was improved with the increase of fiber volume
from 0% to 4%. Zhang et al. [199] reported the dynamic tensile strength of UHPC made
with 4% steel fibers measured using SHPB method was up to 15 MPa, which was 50%
greater than the static tensile strength. Su et al. [200] used the SHPB test to study the
effect of steel fibers of the same diameter but different lengths of 6 and 15 mm on
dynamic compression properties of UHPC. The increase in fiber length from 6 to 15 mm
improved the dynamic properties of UHPC by approximately 11%. At a total fiber
volume of 2%, UHPC reinforced with 1.5% long steel fibers (13 mm) and 0.5% short
steel fibers (6 mm) demonstrated the highest static and dynamic compressive behaviors.
Such values were 19% and 14%-24%, respectively, greater than that with 2% short fibers
Fiber hybridization can improve mechanical properties due to combined benefits exerted
from these fibers. For example, high modulus fibers play a significant role in enhancing
the tensile strength, while low modulus fibers dominated the ductility [201]. Long steel
fibers play a dominating role in improving the impact resistance capacity of UHPC [202].
At a total fiber volume of 2%, UHPC reinforced with 1.5% long fibers (13 mm) and 0.5%
short fibers (6 mm) demonstrated the highest static and dynamic compressive behaviors,
which were 19% and 14%-24%, respectively, greater than that those with 2% short fibers
[88].

UHPC is initially produced with high content of cement and silica fume, steel
fiber, and special type of finely ground quartz sand. Recently, many attempts have been
used to enhance the performance and cost-effectiveness of UHPC. This includes the use
of hybrid fibers [203], replacement of quartz sand by natural and masonry sand

[204,205], and use of supplementary cementitious materials (SCMs) [206-207]. SCMs,

www.manaraa.com



143
such as fly ash and slag, can be used to substantially replace portland cement and/or silica

fume and enhance the sustainability of UHPC. Due to their glassy structure and fine size,
the flowability and strength of UHPC can be enhanced. Yazici et al. [206] prepared
UHPC through various replacement ratios of slag (20%, 40%, and 60%) to cement and
reported that the greatest compressive strength was found in the mixture made with 20%
slag. In another study, UHPC mixtures made with 20% to 40% fly ash or slag obtained
high compressive and flexural properties [207]. Furthermore, the performance of UHPC
can be improved using a small amount of nano-particles. They can appropriately enhance
the mechanical properties and durability of UHPC due to the pozzolanic, nucleation, and
filler effects [208,211]. The use of 3.2% nano-CaCOs was reported to enhance the 28 d
fiber-matrix bond strength and static flexural strength by 45% and 23%, respectively
[209]. The fiber-matrix bond strength of UHPC incorporated with 1% nano-SiO2 was
increased by 35% compared to the control mixture [210]. Su et al. [216] investigated
nano-CaCOs, nano-SiO2, nano-TiOz, and nano-Al203 on dynamic compression and
tensile properties of UHPC and reported that nano-CaCO3s demonstrated the highest
strength. According to the literature review, there is a perceived lack of comparative
studies on fiber-matrix bond and dynamic mechanical properties of UHPC made with
different types of SCM and nano-particles.

This study presented here was undertaken to investigate the fiber-matrix bond and
static and dynamic mechanical properties of UHPC made with various types of SCMs
and nano-particles. The investigation included non-fibrous UHPC matrix and UHPC
mixtures prepared with 2% steel fibers. A reference UHPC mixture made with 20% silica

fume replacement to binder was used. Five mixtures incorporated slag, fly ash, nano-
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CaCOs, and nano-SiOz in addition to 20% silica fume in ternary or quaternary mixtures

were also used. Drop weight impact three-point bending testing was conducted to
investigate the impact flexural behavior of the specimens, while the static flexural

behavior was evaluated using specimens with the same size.

9.2. STATIC AND IMPACT MECHANICAL PROPERTIES OF UHPC
MATRIX

Static and impact mechanical properties of the six non-fibrous mixtures made
with different components were compared.

9.2.1. Static Compressive and Flexural Strengths of UHPC Matrix. Figure
9.1 compares the static compressive and flexural strengths of the UHPC matrix that
determined at 7 and 28 d. The 7 d compressive strength of the reference mixture (U20)
was 89.6 MPa. The incorporation of 20% SL or 20% FA decreased the 7 d compressive
strength by approximately 10%, while nano-particles increased it by approximately 15%
compared to the reference specimens.

With prolongation of curing time to 28 d, the SL20 and FA20 mixtures exhibited
slightly greater compressive strengths (5 MPa) than that of the reference specimens. The
decrease in compressive strength associated with SL and/or FA at early age might be due
to delayed reactivity of cement and relatively weak chemical bond of the hydration
products [211]. The addition of nano-particles rendered the highest compressive strength
at 7 and 28 d, which was 10% greater than that of the reference specimen.

The static flexural load-deflection curves of the UHPC matrix are presented in

Figure 9.2. The load changed linearly with the increase of deflection. Once reaching the
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ultimate strength, the UHPC matrix exhibited a sudden drop at a deflection of

approximate 0.4 mm, reflexing a brittle failure.
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Figure 9.1. Static compressive and flexural strengths of UHPC matrix at 7 and 28 d

16000

— U20
- =-SL20
— FA20
12000 | _uT
—— NC3.2
= NSL.0
< 8000
8
-
4000
0 - 1 1
0.25 0.50 0.75

Deflection (mm)

Figure 9.2. Static flexural strengths of investigated UHPC matrix at 28 d
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As can be also seen from Figure 9.2, the flexural strengths of the investigated
UHPC matrix were approximately 19 MPa at 7 d. With curing age prolonged to 28 d, the
two mixtures with nano-particles demonstrated a greater improvement, which was
approximately 10% when compared to the reference specimens. This agrees well with the
compressive strength results.

9.2.2. Impact Flexural Behavior of UHPC Matrix. The impact flexural load-
deflection curves of the UHPC matrix under impact loading are shown in Figure 9.3.
Parabola flexural load-deflection curves were observed, in which an increasing branch of
the load with the increase of deflection to approximately 0.7 mm initially occurred. After
reaching the peak load, it gradually dropped to zero at a deflection of 1.1 mm. Compared
to the U20 mixture, the incorporation of either SCM or nano-particles enhanced the peak
load value. The NC3.2 mixture exhibited the highest peak load of 14,500 N, which was

20% greater than that of the reference mixture.
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Figure 9.3. Impact flexural load-deflection curves of UHPC matrix at 28 d
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Table 9.1 summarizes the static and impact flexural properties of the UHPC

matrix at 28 d. The static flexural strength of the specimens ranged from 21 to 24 MPa; it
was enhanced by 30%-38% under impact loading. This can be due to the exertion of
additional inertia effects under high loading rate, leading to much-localized damage and
hence increased impact flexural strength [212]. Dynamic increase factor (DIF), which is
the ratio of impact flexural strength to static flexural strength of specimens at the same
curing age, was used to compare the improving efficiency of the flexural properties
related to SCMs or nano-particles. As observed from Table 9.2, the SL20 mixture showed
the highest DIF value, followed by that of the NC3.2 mixture. This demonstrates that the
incorporation of 20% SL or 3.2% NC showed better improvement in flexural strength.
Moreover, the use of SCM and nano-particles in ternary or quaternary mixtures
increased the total impact energy during impact loading. The total energy of the reference
specimen was 6.11 J and increased by 20% and 10% for the NC3.2 and SL20 mixtures,
respectively. Compared to the total static energy, the total impact energy was six times

greater.

Table 9.1. Summary of static and dynamic flexural properties of UHPC matrix at 28 d

. Impact Static Total .
Mixture zﬁllg)mty flexural flexural DIF  impact ;?;?é;tg)'c
strength (MPa) strength (MPa) energy (J)
u20 0.27 28.6 21.0 136 6.1 0.9
SL20 0.31 32.8 21.6 152 6.7 1.2
FA20  0.30 28.4 21.7 131 65 1.0
uT 0.28 29.4 21.1 139 6.8 0.9
NC3.2 0.26 34.3 23.3 1.47 7.3 1.4
NS1.0 0.33 33.0 23.8 1.38 6.8 1.1
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9.3. BOND PROPERTIES BETWEEN EMBEDDED FIBERS AND UHPC
MATRIX

Figure 9.4 illustrates the bond strength and pullout energy between the embedded
fibers and the UHPC matrix. The fiber-matrix interfacial bond properties play a
dominated role in determining the stress transfer efficiency from the matrix to the fiber as
well as strain-hardening behavior. Generally, the higher the fiber-bond properties are, the
greater the strength and toughness of the UHPC would be. The addition of SCM and
nano-particles improved both the bond strength and the pullout energy. The NC3.2
mixture exhibited the greatest bond strength and pullout energy, followed by those of the
SL20 mixture. The bond strength of the reference mixture (U20) at 28 d was 3.3 MPa. It
increased by 30% and 48% for SL20 and NC3.2, respectively. The use of SL, FA, and
NS can contribute to the interfacial bond properties mainly through the pozzolanic, filling
and/or nucleation effects [211]. For nano-CaCOs, except the nucleation effect to be
absorbed onto the main binding phase C-S-H, to change its structure, it also possesses the
ability to react with C3A to form mono- and/or hemi-carboaluminate [213]. This would
generate more hydration products and benefit the fiber-matrix bond properties. In
addition, the UT mixture showed the lowest bond strength and toughness, in exception of
the reference mixture. This might be attributed to dilution effect to cement because of
greater use of SCM content. Wong et al. [211] studied the influence of FA content,
varying from 15% to 55%, on the bond strength and fracture properties of mortar-
aggregate interface at a water-to-binder ratio of 0.3. The interfacial bond strength and
fracture toughness at 28 d increased when 15% FA was incorporated but decreased with

further content up to 45% and 55%.
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Figure 9.4. Fiber-matrix bond properties at 7 and 28 d

9.4. STATIC AND IMPACT MECHANICAL PROPERTIES OF UHPC

Static and impact mechanical properties of the six UHPC made with 2% steel
fibers were investigated.

9.4.1. Static Compressive and Flexural Strengths of UHPC. Figure 9.5
illustrates the static compressive and flexural strengths of the UHPC mixtures containing
2% steel fibers after 7 and 28 d of age. The compressive strengths of the UHPC
specimens with various SCM or nano-particle types were similar, which were
approximately 120 and 155 MPa at 7 and 28 d, respectively. Such values were
approximately 9%-14% greater than that of the reference specimens. However, their
static flexural strengths showed an apparent difference. UHPC mixture with 3.2% nano-
CaCOs (NC3.2-2) or 20% slag (SL20-2) exhibited the highest flexural strength,

depending on curing time. Their flexural strengths were increased by 15%-22% in
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comparison to the reference specimen. In addition, the UT-2 mixture demonstrated a

relatively low flexural strength, but was still slightly greater than that of the reference

specimen. This is in good agreement with the fiber-matrix bond properties.
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Figure 9.5. Static compressive and flexural strengths of UHPC at 7 and 28 d

The static flexural load-deflection curve of UHPC is illustrated in Figure 9.6. It
can be divided into three regions: (1) a linear elastic region; (2) a non-linear region until
peak load; and (3) a deflection softening region with curved patterns [214].In the linear
elastic zone, the load increased linearly with the increment of deflection. When the
cracking was initiated, the load increased nonlinearly with the deflection at a lower slope
to reach the peak load. In this region, the occurrence of cracks was accompanied by fibers
gradually be pulled out from the matrix. In the deflection softening region, zig-zag

patterns associated with fiber bridging and then fiber pullout processes in the

www.manaraa.com



151
corresponding crack sections were observed. The size of the patterns decreased with the

increase of deflection, indicating decreased capacity in sustaining further loads.
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Figure 9.6. Static flexural load-deflection curves of UHPC at 7 d

9.4.2. Impact Flexural Properties of UHPC. Figure 9.7 depicts the impact
flexural load-deflection curves of UHPC specimens made with 2% steel fibers. The
flexural load-deflection relationship can be divided into five regions. Onset of region I, a
small initiated load was acted with setting of the loading system. The load then increased
linearly with the mid-span deflection at a greater slope until cracking occurred (Region I).
In this region, the slope was closely correlated to the flexural strength of the matrix. The
NC3.2-2 mixture showed the highest slope, followed by those of SL20-2, NS1.0-2, and
FA20-2. A non-linear ascending part (Region I1) was followed by the appearance of the
peak load at a deflection of approximately 1 mm. The peak flexural strength was strongly

linked to the matrix strength and fiber-matrix bond strength. After a sudden drop in the
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load (Region I11), the load reincreased (Region 1V) and eventually reached zero load (V).
The reincreased load might be due to the downward acceleration of the drop hammer
and/or occurrence of multiple flexural cracks [215]. The first and second peak values
varied significantly with the mixture composition. The ternary UHPC mixtures with the
incorporation of 20% SL or 3.2% NC had the highest peak load values, which were 20%-

30% higher than that of the reference UHPC (U20-2).
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Figure 9.7. Impact flexural load-deflection curves of UHPC at 7 d

Other researchers investigated the effect of nano-particles, including NC, NS,
nano-TiOz, and nano-Al203, on dynamic compression and tensile properties of UHPC
[216]. The authors reported that the UHPC made with 3% nano-CaCOs exhibited better
crack confinement and the highest compression strength increment. Similarly, Wu et al.
[207] compare the static flexural properties of UHPC made with either slag or fly ash

replacements of 0, 20%, 40%, and 60% and found that the specimens with the same
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content of SL demonstrated better flexural strength and toughness, regardless of curing
regime. This contribution associated with SL mixture can be attributed to high pozzolanic
effect and nearly the same hydraulic activity as portland cement, which can result in
better efficiency in improving interfacial bond properties [217].

Table 9.2 shows the static and dynamic flexural strengths of UHPC at 7 d. The
ratios of impact flexural strengths to static flexural strengths (i.e. DIF) varied between
1.02 and 1.16. Generally, the DIF increases with the increase in strain rate and impact
velocity [215]. Their total impact energies ranged from 32 to 40 J, which were six times
greater than those of the UHPC matrix without any fiber. It should be noted that the total
static energy was greater than the total impact energy for some mixtures, which might be
due to slower energy dissipation in longer loading time. The loading time for conducting
static flexural strength was 5 min, compared to few seconds for the impact flexural

strength loading.

Table 9.2. Summary of static and dynamic flexural strengths of UHPC at 7 d

Mixture  Velocity Impact  Static DIF Total Total
(m/s) flexural  flexural impact static
strength  strength energy energy (J)
(MPa)  (MPa) )
U20-2 1.53 33.9 30.1 1.13 36.6 34.9
SL20-2 1.55 39.9 36.7 1.09 38.6 39.1
FA20-2 1.53 36.8 33.9 1.09 32.9 38.5
uT-2 1.54 34.5 31.7 1.09 32.7 33.0
NC3.2-2 1.36 42.1 36.2 1.16 37.8 44.6
NS1.0-2  1.38 36.1 354 1.02 36.1 394
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9.5. RADAR CHART ANALYSIS FOR FIBER-MATRIX BOND AND
FLEXURAL PROPERTIES

Figure 9.8 compares the fiber-matrix bond and flexural properties of the six

UHPC mixtures using radar analysis with considering eight related outputs. The outputs
were normalized to compare the contribution of each mixture to the mechanical
properties of UHPC. The surrounding areas connected by the eight normalized outputs of
the investigated mixtures were integrated. Generally, the greater the area is, the better the
flexural properties of UHPC would be. Given the same type and geometry of steel fibers,
the flexural strength and toughness of UHPC are governed by the quality of matrix, fiber-
matrix interfacial bond, and orientation of fibers. Both SL, FA, NC, and NS can be used
to replace cement and improve the flexural properties. The NC3.2-2 and SL20-2 mixtures

showed better flexural properties, as can be seen from Fig. 9.8(b).
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Figure 9.8. Radar chart analysis (a) Radar chart; and (b) Surrounding area (Note: outputs
from 1 to 7 denote 7-d impact flexural strength, 7-d static flexural strength, 7-d impact
total energy, 7-d bond strength, 28-d bond strength, 28-d static flexural strength, 7-d
pullout energy, and 28-d pullout energy, respectively)
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9.6. SUMMARY

This study investigated the mechanical properties of UHPC made with various
types and combinations of SCM and nano-particles. The binary mixture with 20% SF,
ternary mixtures with 20% SF + 20% FA, 20% SF + 20% SL, 20% SF + 3.2% NC, and
20% SF + 1.0% NS, and quaternary mixture with 20% SF + 20% FA +20% SL were
used. Fiber-matrix bond properties, compressive strength, and static and impact flexural
properties of both UHPC matrix and UHPC incorporating 2% steel fibers were evaluated.
Based on the results presented in this study, the following conclusions can be drawn:

(1) The incorporation of 20% SL, 20% FA, 3.2% NC, and 1.0% NS in ternary
mixtures increased the 28 d compressive and flexural strength of UHPC matrix (without
fiber) by 9%-14% compared to the reference mixture.

(2) Under static flexural loading, the UHPC matrix exhibited a sudden drop at a
deflection of approximate 0.4 mm once reaching the peak load. Parabolic flexural load-
deflection curves were observed to render greater flexural strength and toughness under
impact loading. The impact flexural strength of the UHPC matrix was increased by 30%
to 38% compared to the static flexural strength. The total impact energy was Six times
greater than the total static energy.

(3) The incorporation of 20% SL, 20% FA, 3.2%NC, and 1% NS in ternary
UHPC mixtures exerted a comparable effect on compressive strength of UHPC with 2%
steel fibers. However, a distinct difference in fiber-bond and flexural strengths of UHPC
was observed. Ternary UHPC mixtures with 20% SL or 3.2% NC exhibited better fiber-

matrix bonds, which were 30%-48% greater than the reference mixture.
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(4) The change in flexural properties of investigated UHPC mixtures made with

2% steel fibers agreed well with the fiber-matrix bond properties. Ternary UHPC

mixtures with 20% SL or 3.2% NC had better flexural properties. The 28 d static flexural
strengths were improved by 15%-22%, in comparison to the reference specimen. The 7 d
impact flexural strengths were enhanced by 20%-30%. The incorporation of 20% FA and
20% SL in quaternary mixture reduced the strength gain due to dilution effect to cement.

Therefore, slag and nano-CaCOs are recommended for enhancing the flexural properties

of UHPC.
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10. CONCLUSIONS AND FUTURE WORK

10.1. CONCLUSIONS

This study focuses on the multi-scale investigation of UHPC in terms of fiber-
matrix interfacial properties, microstructure, mechanical properties, and their
interrelationships. It aims at preparing cost-effective UHPC with dense structure and
superior strength and toughness. The following four parts were undertaken to achieve this
goal: 1) influence of different types and contents of SCMs, including silica fume, slag, fly
ash, nano-particles, on properties of non-fibrous UHPC matrix. Such properties include
flowability, heat of hydration, matrix strength, and fiber-matrix bond properties; 2)
investigation on microstructure of matrix and fiber-matrix interface using advanced
techniques, such as TG, MIP, XRD, SEM, and micro-hardness; 3) improvement on fiber-
matrix bond properties using deformed fibers, including corrugated and hooked fibers,
and clarification of bond strengthening and toughening mechanisms associated with fiber
geometry; and 4) study on effect of SCM, nano-particles, and fiber geometry on
mechanical properties of UHPC made with 2% steel fibers. Based on the corresponding
experimental results, the relationship between fiber-matrix bond strength and flexural
strength of UHPC was established based on the composite theory. In terms of the
corresponding investigation, the following results can be drawn:

10.1.1. Silica Fume Series. These include two silica fume series of UHPC matrix
made with fixed SP dosage and fixed flowability.

10.1.1.1. UHPC matrix with fixed SP dosage. (1) Due to the accelerated

hydration of cement by silica fume, the compressive and flexural strengths of UHPC
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matrix containing 15%-25% silica fume were enhanced by 10-25 MPa after 28 d standard
curing when compared to that of the reference sample.

(2) The CH content and porosity of samples with 15%-25% silica fume were only
3% and 5%-8% after 28 d, respectively. However, when 25% silica fume was replaced,
strengths began to decrease due to reduced flowability and slightly increased porosity.

10.1.1.2. UHPC matrix and UHPC with fixed flowability. (1) The
incorporation of 5%-25% improved the mechanical properties of UHPC with fixed mini-
slump flow. The optimal silica fume content for UHPC matrix and UHPC with 2% steel
fibers were 10%-20%. Compared to the reference mixture, the flexural and tensile
strengths of UHPC made with 10%-20% silica fume were enhanced by 7%-37% and
33%-70%, respectively. With silica fume content further increased up to 25%, the
corresponding values were significantly decreased.

(2) The flexural-to-tensile strength ratio of UHPC matrix without fiber was in the
range from 1.3 to 2.3, while increased to 1.9 to 2.8 with the addition of 2% steel fibers.

(3) The tensile strength of UHPC made with 2% steel fibers can be efficiently
predicted using the composite theory with considering the properties of UHPC matrix,
consumed fiber orientation coefficient of 0.5, and fiber characteristics, including fiber
geometry, fiber volume, and fiber diameter. The values were dispersed around the
equality line with a relative coefficient of 0.64.

10.1.2. Nano-CaCOs3 Series. (1) The incorporation of suitable nano-CaCOs
significantly enhanced the interfacial bond properties between embedded fibers and
UHPC matrix. The interfacial bond strength and pullout energy increased first with the

increase of nano-CaCQOs content, then decreased when a critical value of 3.2% was
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exceeded. The bond strength and pullout energy were improved by 45% and 200%,

respectively, in comparison with the reference specimen after 28 d standard curing.

(2) The bond strength was significantly improved from 1 to 7 d, but was almost
mature after 28 d of standard curing. The bond strength and pullout energy can be
efficiently predicted given the curing time and nano-CaCOs content using the response
surface methodology.

(3) The compressive and flexural strengths of UHPC made with 2% steel fibers
increased with the incorporation nano-CaCOs particles, but decreased when excessive
nano-CaCOs was used. UHPC with 3.2% nano-CaCOs particles reached the highest
compressive and flexural strengths, which were 10% and 23%, respectively, greater than
those of the reference specimen under 28 d standard curing. This suggests nano-CaCQOz3
was efficient in enhancing the efficiency of fiber-matrix stress transfer. Appropriate
nano-CaCOs content decreased porosity and transformed adhesive failure into cohesive
failure, as verified by MIP and BSEM observation. However, excessive nano-CaCOs
content increased the porosity due to agglomeration issues.

10.1.3. Nano-SiO- Series. (1) Nano-SiOzsignificantly enhanced the interfacial
bond properties between fibers and UHPC matrix. The bond strength and pullout energy
increased first with the increase of nano-SiOz content, but then decreased when a critical
value of 1% was exceeded. Such change was consistent with the compressive strength
development of matrix. The bond strength and pullout energy of UHPC matrix with 1%
nano-SiO2 after 28-d standard curing were enhanced by approximately 35% and 70%,

respectively, when compared to the reference specimen.
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(2) Mechanical properties of UHPC made with different nano-SiO2 contents
increased initially with the increase of nano-SiO2 content, but decreased when exceeding
a critical value of 1%. High content of nano-SiO2 resulted in great loss of compressive
and flexural strengths. The values could be even lower than those of the reference
specimen.

(3) Nano-SiO2 could serve as nuclei for the precipitation of C-S-H, hence leading
to more C-S-H content and alteration of C-S-H structure. The Ca/Si ratio in the reference
sample was greater than 1. The inclusion of Si element from nano-SiO2 decreased the
Ca/Si ratio to lower value, leading to longer silica chain length and eventually improved
mechanical properties of the C-S-H. The addition of 1% nano-SiO2 resulted in the lowest
porosity of matrix associated with denser and more homogeneous microstructure. 1TZ
with a thickness of 50 um was observed due to the wall and bleeding effect in correlation
with lower micro-harness compared to the bulk matrix.

10.1.4. UHPC Reinforced with Different Fiber Geometries. (1) The use of
deformed fibers effectively enhanced the interfacial bond properties between fibers and
UHPC matrix, as well as mechanical properties of UHPC. Pullout bond strength and
toughness of embedded hooked fibers were approximately seven and five times greater,
respectively, than those with straight fibers, and three times greater than those of
corrugated fibers.

(2) Pullout bond strength did not significantly increase beyond 7 or 28 d,
depending on the fiber type. Good exponential correlation was established between CH

content and pullout bond strength of embedded fibers. The pullout behavior of the UHPC
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matrix prepared with 20% silica fume was greater than that with 15% silica fume. This

was confirmed by lower porosity and less CH content in the matrix.

(3) Fiber shape had limited effect on compressive strength of UHPC but
significant influence on flexural strength. Depending on the curing age, the flexural
strength of UHPC with 2% corrugated and hooked fibers were 8% to 28% and 17% to
50%, respectively, greater than that with straight fibers.

(4) Flexural strength of UHPC incorporating different shaped fibers can be
predicted using pullout bond strength of embedded fibers and flexural strength of the
non-fibrous UHPC matrix based on the composite theory. The prediction takes into
consideration of fiber volume, fiber length, fiber diameter, coefficient related to the fiber
orientation in three dimensions. The ratios of predicted to measured value were between
0.8and 1.1.

10.1.5. UHPC with Optimized Composition. (1) The incorporation of 20% SL,
20% FA, 3.2% NC, and 1.0% NS in ternary mixtures increased the 28 -d compressive
and flexural strength of UHPC matrix (without fiber) by 9%-14% compared to the
reference mixture.

(2) Under static flexural loading, the UHPC matrix exhibited a sudden drop at a
deflection of approximate 0.4 mm once reaching the peak load. Parabolic flexural load-
deflection curves were observed to render greater flexural strength and toughness under
impact loading. The impact flexural strength of the UHPC matrix was increased by 30%
to 38% compared to the static flexural strength. The total impact energy was Six times

greater than the total static energy.
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(3) The incorporation of 20% SL, 20% FA, 3.2% NC, and 1.0% NS in the ternary

UHPC mixtures exerted a comparable effect on compressive strength of UHPC with 2%
steel fibers. However, a distinct difference in fiber-bond and flexural strengths of UHPC
was observed. Ternary UHPC mixtures with 20% SL or 3.2% NC exhibited better fiber-
matrix bond, which was 30%-48% greater than that of the reference mixture.

(4) The change in flexural properties of investigated UHPC mixtures made with
2% steel fibers agreed well with the fiber-matrix bond properties. Ternary UHPC
mixtures with 20% SL or 3.2% NC obtained better flexural properties. The 28 d static
flexural strengths were improved by 15%-22%, in comparison to the reference specimen.
The 7 d impact flexural strengths were enhanced by 20%-30%. The incorporation of 20%
FA and 20% SL in quaternary mixture reduced the strength gain due to dilution effect to
cement. Therefore, slag and nano-CaCOs are recommended in enhancing the flexural

properties of UHPC.

10.2. FUTURE RESEARCH

Based on the findings from this study, the following research perspectives are
recommended:

(1) The rheological properties of UHPC made with different types and contents of
nano-particles and fiber geometries and their effect on flexural and tensile strength of
UHPC should be investigated.

(2) The nano-mechanical properties, including indentation modulus and hardness,
of hydration products in UHPC optimized with different types and contents of SCMs and

nano-particles should be investigated.
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(3) Modelling of deformed fiber pullout behavior and flexural/tensile strength of
UHPC made with different fiber geometries should be carried out with the consideration
of mixture composition, fiber-matrix bond strength, and fiber orientation.

(4) Multi-scale modelling of mechanical properties of UHPC that takes into
consideration the fiber-matrix bond strength characteristics and the nano-mechanical

properties of the hydration products should be developed.
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ARTICLE INFO ABSTRACT

Keywords: The use of steel fiber is essential to secure high strength and ductility in producing ultra-high performance
Fiber shupe concrete (UHPC). In this study, the interfacial bond properties between embedded steel fibers with different
Flexural properties shapes (straight, hooked, and corrugated fibers) and UHPC matrices proportioned with either 15% ar 20% silica
Microgtrictive fume, by mass of binder, under different curing times were investigated. Flexural properties of UHPC reinforced
m:;;‘" Péhariar with 2% different shaped fibers were also evaluated. Test results s { that corrugated and hooked fibers

significantly improved the bond properties by three to seven times when compared to those with straight fibers.
The flexural strength of UHPC with corrugated and hooked fibers were enhanced by 8%—28% and 17%-50%,
respectively. Microstructural results from MIP, BSEM, and TG confirmed the change in bond properties. The
bond strength of straight fibers exponentially increased with the decrease of calcium hydroxide content. Based
on the composite theory, the flexural strengths of UHPC made with different shaped fibers can be efficiently
predicted using the fiber-matrix bond strength, the flexural strength of the UHPC matrix (non-fibrous matrix),
and the parameters of fibers. The ratios of predicted to measured flexural strengths ranged between 0.8 and 1.1,
in which straight fibers showed a larger discreteness due to higher sensitivity of flexural strength associated with
the orientation of fibers.

1. Introduction a fiber is pulled out from the matrix, two failure modes would occur: a

debonding or a fracture of the fiber [12]. Fiber rupture will be observed

Non-fiber-reinforced concrete is a quasi-brittle material that can
undergo brittle failure under tensile load. The brittleness of concrete
increases with the increase of concrete strength. In order to use it in
structural elements subjected to tensile, fatigue, and impact loads, the
design of this composite material should be optimized to ensure ade-
quate strength, ductility, and energy absorbing capacity [1.2]. Ultra-
high performance concrete (UHPC) is a new class of materials typically
characterized by high content of cementitious materials (800-1200 kg/
m?), water-to-cementitious material (W/CM) ratio of 0.20 = 0.02, use
of 1%~4% steel fibers by volume of concrete [3]. The inclusion of short
and randomly distributed fibers can significantly improve its strength
and toughness [4,5].

The bond at the interface between the fiber and the matrix can
greatly affect mechanical properties of the composite material, in-
cluding that of UHPC. When a composite material is subjected to ex-
ternal loads, the matrix would initially sustain the load and then the
fiber through stress transferring at the fiber-matrix interface [6]. When

* Corresponding author. College of Givil Hunan Uni , Cl

if the pullout load that corresponding to the tensile strength of the fiber
is lower than that of the shear strength of the matrix. This failure mode
is not ideal from the point of view of reinforcement because of limited
energy dissipation and underutilization of the potential mechanical
property of the fiber [7,13]. Besides, the energy is released abruptly,
which can dramatically decrease the toughness of the composite ma-
terial. However, if appropriate high tensile strength approaching to the
ultimate tensile strength of fiber is exerted, higher energy dissipated
associated with the fiber-matrix interface could be obtained.

Several strategies can be used to improve bond properties at inter-
facial transition zone (ITZ) between the embedded fibers and the ma-
trix, including: (1) densification of the cementitious matrix [8-10]; (2)
use of deformed fibers [11]; (3) surface treatment of fibers, such as
plasma treatment for polyethylene fibers [12]. The increase level of
bond resulting from the use of deformed fibers appears to offer the
highest degree of bond improvement [12,13]. The bond mechanism
between embedded fibers and surrounding matrix typically includes
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The mechanical properties of a fiber-reinforced concrete are closely related to the properties of the
matrix, fiber, and fiber-matrix interface. The fiber-matrix bond property is mainly governed by the
adhesion between the fiber and surrounding cement materials, as well as the strength of materials at the
interfacial transition zone. In this paper, the effect of nano-CaC03 content, varying between 0 and 6.4%,
by mass of cementitious materials, on microstructure development. fiber-matrix interfacial bond prop-
erties, and mechanical properties of ultra-high performance concrete (UHPC) reinforced with 2% steel
fibers were investigated. The bond properties, including bond strength and pullout energy, were eval-
uated. Mercury intrusion porosimetry (MIP), backscattered electron microscopy (BSEM), optical micro-
scopy, and micro-hardness testing were used to characterize the microstructure of matrix and/or
interfacial transition zone (ITZ) around an embedded steel fiber. Test results indicated that the incor-
poration of 3.2% nano-CaCOj3 significantly improved the fiber-matrix bond properties and the flexural
properties of UHPC. This was attributed to densification and strength enhancement of ITZ as observed
from micro-structural analyses. Beyond the nano-CaCO; content of 3.2%, the fiber bond and mechanical
properties of UHPC decreased due to increased porosity associated with agglomeration of the nano-

CaCO3.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Ultra-high performance concrete (UHPC) is produced with high
content of binder, low water-to-binder ratio, use of small fibers,
and/or absence of course aggregate |1,2]. The design of UHPC in-
volves in reduction in porosity, improvement in microstructure,
enhancement in homogeneity, and increase in strength and
toughness | 2—4]. The superior strength and ductility can enable the
production of lightweight and flexible UHPC structure, whereas
dense structure, excellent durability, and stability can endow the
structure with long service life and low maintenance [5.6].
Although UHPC is less porous compared to conventional concrete, a
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relatively weak interfacial transition zone (ITZ) still exists. The
strength and ductility of fiber-reinforced concrete mainly depend
on the quality of the micro- and nano-scale structure, especially at
the fiber-matrix interface. Therefore, it is essential to engineer the
microstructure of the ITZ in order to enhance fiber-matrix bond in
UHPC. Such properties have marked influence on macro-properties.
There are three main ways to improve the bond at the fiber-matrix
interface: 1) densification of the cementitious matrix using sup-
plementary of cementitious materials (SCMs), nano-particles, and
high temperature curing [7]; 2) enhancement of mechanical
anchorage through the use of deformed fibers [8]; and 3)
improvement of fiber-matrix friction by surface treatment |9].
Densification of the cementitious matrix is the most funda-
mental method, which targets at densifying the microstructure and
enhancing the strength of the matrix. A high amount of SCMs, such
as silica fume, slag, fly ash, and a small amount of nano-materials
have been used for this purpose [10,11]. It was reported that
incorporation of 15% to 25% silica fume, by mass of cementitious
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Bond properties between fibers and cementitious matrix have significant effect on the mechanical behavior of
composite materials. In this study, the development of steel fiber-matrix interfacial bond properties in ultra-
high strength concrete (UHSC) proportioned with nano-SiO; varying between 0 and 2%, by mass of cementitious
materials, was investigated. A statistical model relating either bond strength or pullout energy (o curing time and
nano-Si0, content was proposed by using the response surface methodology. Mercury intrusion porosimetry
(MIP) and backscatter scanning electron microscopy (BSEM) were used to characterize the microstructure of
the matrix and the fiber-matrix interface, respectively. Micro-hardness around the embedded fiber and hydra-
tion products of the matrix were evaluated as well. Test results indicated that the optimal nano-5i0; dosage
was 1% in terms of the bond properties and the microstructure. The proposed quadratic model efficiently predict-
ed the bond strength and pullout energy with consideration of curing time and nano-5i0; content. The improve-
ment in bond properties associated with nano-silica was correlated with denser matrix and/or interface and
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stronger bond and greater strength of hydration products based on microstructural analysis.

Published by Elsevier Ltd,

1. Introduction

Ultra-high performance concrete (UHPC) is an advanced composite
material typically made with very low water-to-binder ratio of
0.20 + 0.02 and contains high content of binder, high efficiency
superplasticizer, and high strength fibers [ 1]. As an intrinsically hetero-
geneous material, its mechanical properties are governed by the quality
of the matrix, the characteristic of the fiber, and the quality of the inter-
facial transition zone (ITZ) between the fiber or aggregate and the ma-
trix [2-4]. The bond properties of fiber-matrix interface play a
predominant role in the mechanical properties of composite materials
because of stress transferring at this interface, which can make an in-
trinsically brittle material into a ductile one [5,6]. The microstructure
of UHPC is denser and more homogenous than that of ordinary concrete
[7.8]. However, as the fiber-matrix interface bridging different phases
with various stiffnesses, it is a special component and still the most im-
portant yet least understood part in UHPC. Therefore, optimization of

* Corresponding author at: College of Civil Engineering, Hunan University, Changsha
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the properties at the fiber-matrix interface is necessary for improving
the overall mechanical behavior of composite materials.

With the advance and development of nanotechnology, the efficien-
cy of using nano-Si0;, in cement-based materials has been investigated.
These include the effect on microstructure [9,10], heat of hydration [ 10,
11], workability and rheological properties [ 12—15], mechanical proper-
ties [9,16], dimensional stability [17], and durability [18,19]. Because of
its extremely small size and highly pozzolanic activity, it can act as nu-
clei or filler in cement paste to accelerate the heat of hydration [11],
densify the microstructure [9,10], and hence enhance the homogeneity
and improve the early-age mechanical properties and durability [16,17].
So far, no information focuses on the contribution of nano-particles on
the interfacial bond properties between fibers and ultra-high strength
concrete (UHSC).

This study aims at investigating the influence of different nano-SiO,
contents, varying from 0 to 2%, by mass of cementitious material, on the
fiber-matrix bond and microstructure of UHSC. A simple and effective
doubled-sided pullout testing was conducted to evaluate the interfacial
bond properties, which include pullout load-slip relationship, bond
strength, and pullout energy. Mercury intrusion porosimetry (MIP),
backscatter scanning electron microscopy (BSEM), micro-hardness
measurement, and X-ray diffraction (XRD) analysis were employed to
evaluate the microstructural features associated with the matrix and/
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The use of silica fume can significantly enhance mechanical properties of concrete given its beneficial
filling and pozzolanic effects. In this study, a simiple and effective double-side pullout testing method was
adopted to characterize the interfacial bond properties, which include pullout load-slip relationship,
bond strength, and pullout energy, of steel fiber-matrix in ultra-high strength cement-based material
(UHSC) with 0—-25% silica fume by the mass of binder. The effects of silica fume content on flowability,
heat of hydration, compressive and flexural strengths, hydration products, and pore structure of matrix at
different curing time were evaluated as well. Backscatter scanning electron microscopy (BSEM) and
micro-hardness measurement were used to examine the quality of interfacial transition zone (ITZ)
around the fiber. In terms of the results, the optimal silica fume content could be in the range of 15%
—25%. UHSC mixtures with these dosages of silica fume showed significant improvement in pullout
behavior. Its bond strength and pullout energy at 28 d could increase by 170% and 250% compared to the
reference samples without any silica fume. The microstructural observation verified the findings on the
macro-properties development. Formation of more and higher strength of hydration products and
refinement of ITZ around the fiber ensured higher micro-hardness, and thus improved the bond to fiber.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Ultra-high strength cement-based material (UHSC) is an
advanced material characterized by use of high content of
cementitious materials, sand, superplasticizer and/or fibers, and
absence of coarse aggregate | 1]. The very low water-to-binder ratio
(w/b) and dense microstructure allow its high strength generally
over 120 MPa and superior durability. However, the higher the
compressive strength is, the more brittle the matrix becomes. Fiber
has been proven as an essential part for UHSC |2.3]. With the
incorporation of proper fibers, the initiation, propagation or coa-
lescence of cracks can be efficiently controlled. Many types of fiber,
such as carbon, steel, and polypropylene fibers have been used in
UHSC. Steel fiber is the most commonly used one because of its
superior tensile strength over 2000 MPa. The incorporation of such
steel fiber ensures satisfactory mechanical properties, such as
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tensile, bending, and shear strengths of UHSC [4.5]. However, bond
failure associated with fiber-matrix interface is the primary reason
leading to the failure of the whole structure |6 ]. It was reported that
there exists two different interfacial failure modes when steel fibers
are pulled out from matrix [7]. One is adhesive failure often
occurring at actual fiber-matrix interface, while the other one is
adherent failure taking place in matrix. Both failure modes would
directly lead to underutilization of fiber or matrix without fully
exerting their own mechanical capacity, and eventually result in
cracking of composites. Therefore, improvement in the bond
properties between fiber and matrix is of great significance.

The performance of fiber reinforced composites is governed by
the quality of matrix, geometry and type of fiber, and quality of
interfacial transition zone (ITZ) between the fiber or aggregate and
matrix |7—9|. Several strategies can be used to improve the bond
properties at fiber-matrix interface, including: (1) densification of
the cementitious matrix and ITZ |8 .9]; (2) use of deformed fibers
|4.10]; (3) surface treatment of fibers, such as plasma treatment for
polyethylene fibers |7|. Because ITZ has a thickness varying be-
tween 10 and 100 pm, and contains large preferentially calcium
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Nanomaterials have attracted much interest in cement-based materials during the past decade. In this
study, the effects of different nano-CaC0O3 and nano-SiOz contents on flowability, heat of hydration,
mechanical properties, phase change, and pore structure of ultra-high strength concrete (UHSC) were
investigated. The dosages of nano-CaCO3 were 0, 1.6%, 3.2%, 4.8%, and 6.4%, by the mass of cementitious
materials, while the dosages of nano-5i0; were 0, 0.5%, 1.0%, 1.5%, and 2%. The results indicated that both
nano-CaCO3 and nano-Si0; decreased the flowability and increased the heat of hydration with the in-
crease of their contents, The optimal dosages to enhance compressive and flexural strengths were 1.6%
—4.8% for the nano-CaC04 and 0.5%—1.5% for the nano-SiO,. Although compressive and flexural strengths
were comparable for the two nanomaterials after 28 d, their strength development tendencies with age
were different. UHSC mixtures with nano-Si0; showed continuous and sharp increase in strength with
age up to 7 d, while those with nano-CaCO3 showed almost constant strength between 3 and 7 d, but
sharp increase thereafter. Thermal gravimetry (TG) analysis demonstrated that the calcium hydroxide
(CH) content in UHSC samples decreased significantly with the increase of nano-SiO; content, but
remained almost constant for those with nano-CaCOs. Mercury intrusion porosimetry (MIP) results
showed that both porosity and critical pore size decreased with the increase of hydration time as well as
the increase of nanoparticles content to an optimal threshold, beyond which porosity decreased. The
difference between them was that nano-CaC0O3 mainly reacted with CsA to form carboaluminates, while
nano-$i0y reacted with Ca(OH); to form C—S—H. Both nano-CaCO3 and nano-Si0; demonstrated
nucleation and filling effects and resulted in less porous and more homogeneous structure.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

material with average diameter around 10 nm [5]. It is suggested
that C—S—H has low, high, and ultra-high density forms with

Ultra-high strength cement based-material (UHSC) is a novel
type of composite materials with superior static and dynamic
mechanical properties, and excellent durability. Such material can
be used in marine structures, defense and military engineering
applications, and high building construction [ 1-3]. However, as an
intrinsically heterogeneous material, the structure of cement-based
materials can be generally discretized into four multi-scale phases:
nano, micro, meso, and macro [4|. The macro-properties of cement-
based materials are dominated by the structure at the nano-scale
level. The main hydration product, C—S—H, occupies at least
60—70% by volume of the hardened cement paste. It is a nano-scale
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different hardness and elastic modulus values and volume fractions
[4,6]. High density C—S—H degrades much slower than low density
C—S—H under external environmental condition |6]. Furthermore,
water loss from pores in the C—S—H gel can lead to considerable
autogeneous shrinkage, which can cause cracking and loss in
strength and durability of UHSC [ 7]. Therefore, it is vital to optimize
the microstructure of cement-based materials from the nano-scale
to ensure high performance.

Nanotechnology has attracted much interest over the past
decade. Since the introduction of nanomaterials, extensive research
has been conducted to promote their use in cement-based material.
It is well known that nanomaterials can provide significant
enhancement in performance of cement-based material given their
physical effect (filling and nucleation effects) as well as the chem-
ical reactivity |8]. Nano-silica (nano-5i03) [9], nano-alumina (nano-
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HIGHLIGHTS

« Four theoretical principles for production of UHPC, including reduction in porosity, improvement in microstructure, enhancement in homogeneity, and
increase in toughness, are reviewed,

« Effects of different raw materials on performance of UHPC are summarized.

« Mixture design, sample preparation, and curing regimes are discussed.

« Use of conventional materials and commaon technology are trends for production of UHPC.

ARTICLE INFO ABSTRACT
Artir{u history: Ultra high performance concrete (UHPC) refers to cement-based materials exhibiting compressive
Received 17 September 2014 strength higher than 150 MPa, high ductility, and excellent durability. This paper reviews the theoretical

Received in revised form 28 August 2015

rinciples, raw materials, mixture design methods, and preparation techniques for UHPC. Reduction in
Accepted 15 October 2015 pAnep a n prepa q

porosity, improvement in microstructure, enhancement in homogeneity, and increase in toughness are
four basic principles for UHPC design. Raw materials, preparation technique, and curing regimes have
significant influence on properties of UHPC. The use of widely available supplementary cementitious
materials, such as fly ash and slag for parrial/complete replacement of cement and silica fume, could
significantly reduce the materials cost without sacrifice of strength. The use of high temperature curing

Keywords:
Ultra high performance concrete
Theoretical principles

Raw materials results in denser microstructure and better performance than room temperature curing does, but
Mixture design obviously limits its applications of UHPC. Thus, preparation of UHPC using widely available raw
Curing regime materials, common technology. such as conventional casting and room temperature curing, are trends

for production of UHPC.
@ 2015 Elsevier Ltd. All rights reserved.
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